
MP∗ 2025-26

Programme de colles no1

1 Révisions de probabilités de sup.

� Probabilités sur un ensemble �ni.
� Variables aléatoires.

2 Algèbre linéaire : révisions de MPSI, utilisation pratique de la dia-

gonalisation et trigonalisation

� Espace vectoriels, familles libres, génératrices bases, somme directes, sous-espaces supplémentaires.
� Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
� À venir : semaine prochaine formes linéaires, hyperplans...
� Matrices :

� Matrices semblables, deux matrices semblables ont même trace, trace d'un endomorphisme.
� Matrices équivalentes : des matrices sont équivalentes si et seulement si elles ont même rang.

� Semaine prochaine diagonalisation, trigonalisation, (point de vue géométrique et pratique).
Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,

Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse.

3 Questions de cours

1. Théorème du rang : l'image d'une application linéaire est isomorphe à un supplémentaire du noyau,
application si F et F′ sont des supplémentaires d'un même sous-espace vectoriel alors ils sont isomorphes
(p. 40).

2. Tout élément de Mn,p(K) de rang r est équivalent à la matrice Jr. (Preuve algébrique cette semaine) .

3. Polynômes d'interpolation : existence unicité puis expression (page 42).

4 Récitation d'exercices

1. On se donne n urnes dans lesquelles on dispose au hasard et uniformément m boules. Soit k ∈ N.

(a) Quel est la probabilité pm,n de l'événement � la première urne contienne k boules � ?

(b) Soit c un entier naturel et une suite d'entier naturels (mi)i∈N telle que mi ∼
i→+∞

ci. Montrer que pmi,i

tend vers e−c ck

k! , lorsque i tend vers +∞.

(c) ⋆ Déterminer la probabilité qm,n de l'événement � Chaque urne contient au plus une boule �. Montrer
que qm,i tend vers 1 lorsque i tend vers +∞.

Soit c un entier naturel et une suite d'entier naturels (mi)i∈N telle que mi ∼
i→+∞

c
√
i. Montrer que

qmi,i →
i→+∞

exp

(
−c

2

2

)
.

2. Soit V une variable aléatoire dé�nie sur un univers (�ni) Ω, à valeurs dans {0, ..., n}. Montrer que

E(V ) =
n∑

i=1

P(V ≥ i).

Soient X et Y des variables alatoires dé�nies sur Ω, indépendantes et qui suivent la loi uniforme sur
{0, ..., n}. Calculer E(min(X,Y )).



3. On considère une urne contenant a boules noires et b boules blanches. Après chaque tirage la boule
extraite et remise dans l'urne avec c boules de sa couleur. Déterminer la probabilité pn(a, b) que la ne

boule tirée soit blanche. On raisonera par récurrence.

4. ⋆ Deux amis A et B jouent à un jeu chacun leur tour selon le principe suivant :
� chaque partie est indépendante des autres ;
� le joueur A commence ;
� si un joueur perd sa partie alors l'autre joueur joue la prochaine partie ;
� si un joueur gagne sa partie, alors il joue la partie suivante.
� le joueur A gagne une partie avec une probabilité a, (a ∈]0, 1[) et le joueur B gagne une partie avec

une probabilité b, (b ∈]0, 1[).
Quelle est la probabilité que le joueur A remporte sa première partie avant le joueur B ?

5. Soit ℓ une forme linéaire sur Mn(R) telle que pour tout A et tout B éléments de Mn(R), ℓ(AB) =
ℓ(BA) ; montrer qu'il existe k ∈ R tel que ℓ = ktr.

6. Montrer que des éléments de Mn(R), semblables comme éléments de Mn(C) sont semblables comme
éléments de Mn(R).

7. ⋆ Même question pour équivalents. On donnera une preuve par densité algébrique, une en montrant
l'invariance du rang par passage de C à R, ce de deux façons.

8. ⋆⋆ Montrer que des éléments de Mn(Q), semblables comme éléments de Mn(R) sont semblables comme
éléments de Mn(Q).

9. � Théorème d'Hadamard �

Soit A un élément de Mn(R), tel que pour i = 1, 2, . . . , n on ait : |ai,i| >
∑

j=1,...,n,
j ̸=i,

|ai,j |. Montrer que

A est inversible.

10. ⋆ Rn est muni de sa structure euclidienne canonique Pour toute permutation σ élément de Sn, on note
Pσ la matrice de permutation associée à σ On pose : P := 1

n!

∑
σ∈Sn

Pσ.

(a) Montrer que l'endomorphisme p de Rn associé canoniquement à P est une projection dont on déter-
minera l'image et le noyau.

(b) Montrer que p est orthogonale.
(c) On munit Sn d'une probabilité uniforme et l'on désigne par X la variable aléatoire qui à σ élément

de Sn associe le nombre de points �xes de σ. Calculer l'espérence de X.

11. Soit n un entier naturel non nul et A un élément de Mn(R). Montrer que l'ensemble E, dé�ni par

E = {M ∈ Mn(R), AMA = 0n},

est un sous-espace vectoriel de Mn(R) dont on précisera la dimension en fonction du rang de A.

12. ⋆⋆ Soit E un espace de dimension �nie. Montrer que les seuls idéaux bilatères 1 de L(E) sont {OL(E)} et
L(E).

Le résultat demeure-t-il si l'on ne suppose plus E de dimension �nie ?

13. E�et de la multiplication à droite ou à gauche par une transvection, inverse d'une transvection.

14. ⋆ Montrer que tout élément de SLn(R) est un produit de matrices de transvection.

15. ⋆⋆ Déterminer les éléments de Mn(C) dont la classe de similitude est bornée.

16. ⋆⋆ � Théorème de Frobenius-Zolotarev � Soit f une application de Mn(C) dans C continue
telle que :
i. f(In) = 1 ;
ii. pour tout (A,B) ∈ Mn(C)2, f(AB) = f(A)f(B).
Montrer qu'il existe une application g de C dans C continue véri�ant g(1) = 1 et g(ab) = g(a)g(b) pour
tout couple (a, b) de complexes, telle que :

f = g ◦ det.

1. Un idéal bilatère est un sous-groupe stable par multiplication à gauche et à droite par un élément de L(E).
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Programme de colles no2

5 Algèbre linéaire : révisions de MPSI, utilisation pratique de la dia-

gonalisation et trigonalisation

Par K on désigne R ou C
� Espace vectoriels, familles libres, génératrices bases, base canonique de l'ensemble des applications poly-

nômiales à p variables, somme directes, sous-espaces supplémentaires.
� Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
� Formes linéaires, hyperplans.
� Matrices :

� Matrices semblables, deux matrices semblables ont même trace, trace d'un endomorphisme. Matrices
équivalentes : des matrices sont équivalentes si et seulement si elles ont même rang.

� Opérations sur les lignes et colonnes.
� Diagonalisation. (il s'agit d'une première approche géométrique axée sur la pratique, les applications le

polynôme caractéristique. Un prochain chapitre traitera des polynômes d'endomorphismes et des ques-
tions subtiles de réduction)
On désigne u un endomorphisme d'un K espace vectoriel E de dimension �nie non nulle. On note
λ1, λ2, . . . , λk les valeurs propres deux à deux distinctes de u, d'ordre de multiplicité respectifsm1,m2, . . . ,mk.
� Valeurs propres, vecteurs propres, espaces propres : les espaces propres sont en sommes directes.

Espaces propres de deux endomorphismes qui commutent.
� Polynôme caractéristique (dé�nitions, coe�cients remarquables), polynôme caractéristique d'un en-

domorphisme induit.
� Diagonalisation des matrices et des endomorphismes. Dé�nition. l'endomorphisme u diagonalisable

si et seulement si
k
⊕
i=1

Ek = E. La dimension d'un espace propre est inférieur à l'ordre de multiplicité

de la valeur propre associée. l'endomorphisme u est diagonalisable si et seulement si χu est scindé et
mi = dim(Ei), pour i = 1 . . . k.

� A venir : trigonalisation révisions sur les déterminants, critère de diagonalisabilité, trigonalisation, ...

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse.

6 Questions de cours

1. Des vecteurs propres associés à des valeurs propres deux à deux distinctes sont indépendants.

2. Polynôme caractéristique : polynomialité et coe�cients remarquables.

3. Le polynôme caractéristique d'un endomorphisme induit par un endomorphisme u divise le polynôme
caractéristique de u. L'ordre de multiplicité d'une valeur propre est supérieur à la dimension de l'espace
propre associé.

7 Exercices

1. Formules de Wald cf. DM 1 Soient (Xn)n∈N une suite de variables aléatoires i.i.d. à valeurs dans R+

et T une variable aléatoire à valeurs dans N. On suppose que pour n ∈ N∗, les variables T,X1, ..., Xn

sont indépendantes et que X1 et T sont d'espérance �nie. On dé�nit la variable aléatoire S =
T∑

i=1

Xi.

(a) Montrer que E(S) = E(T )E(X1).
(b) ⋆ Donner une formule analogue pour V(S) en supposant que X2

1 et T 2 admettent une espérance �nie.



2. Soit u un endomorphisme d'un espace vectoriel E tel que pour tout élément x⃗ de E, (x⃗, u(x⃗)) soit lié.
Montrer que u est une homothétie. En déduire le centre de GL(E).

3. ⋆ (On admet l'exercice précédent)

(a) Par K on désigne R ou C (ou même tout corps). Soit A un élément deMn(K) de trace nulle. Montrer
que A est semblable à une matrice de diagonale nulle.

(b) Pour tout couple (B,C) d'éléments de Mn(K), on note [BC] = BC − CB (crochet de lie de B et
C). Montrer qu'il existe des matrices B et C telles que A = [BC].

4. Soient A et B des éléments de Mn(K). Comparer com(AB) et com(A)com(B). On commencera par le
cas où A et B sont inversibles.

5. Soit M ∈ Mn(R). Etudier le rang de com(M) en fonction de celui de M . Déterminer det(com(M)) et
com(com(M)).

Retrouver ces résultats par densité algébrique sans discuter sur le rang de M .

6. Déterminer les couples d'applications de R dans R de classe C1, (φ,ψ) tels que :{
φ′ = 6φ+ 4ψ,
ψ′ = 11φ− ψ,

, (1)

7. Soit f un edomorphisme d'un R-espace vectoriel E de dimension n non nulle. Pour tout entier n ≥ 1 on
pose Nn = Ker(()fn) et In = Im(f n). Montrer qu'il existe un entier n0 ≥ 1 tel que :

N1 ⊂
̸=
N2 ⊂
̸=
.......⊂

̸=
Nn0 = Nn0+1 = .... = Nn = ........

I1 ⊃
̸=
I2 ⊃
̸=
.......⊃

̸=
In0

= In0+1 = .... = In = ........

Soit n ∈ N∗. Montrer que In = In+1 si et seulement si In +Nn = In ⊕Nn, (cf. TD 1).
⋆ Montrer la décroissance de la suite (dim(Ni+1)− dim(Ni)i∈N.

8. Soient A et B des éléments de Mn(K). Montrer χAB = χBA, 1. par densité algébrique, 2. en utilsant
l'équivalence de A à Jrg(A).

9. ⋆ Montrer que tout hyperplan de Mn(R) rencontre GLn(R).

10. Soit E un espace vectoriel de dimension �nie et G un sous-groupe �ni de GL (E). Montrer que

dim

⋂
g∈G

Ker(g − idE)

 =
1

|G|
∑
g∈G

Tr(g).

11. Forme de Jordan
Notons pour tout entier k ≥ 2, Jk l'élément de Mk(C) qui n'a que des 1 sur la sous-diagonale et des

zéros partout ailleurs. et convenons que J1 = O1.
Soit M un élément de Mn(C), nilpotent d'ordre p.

(a) Montrer pour p = n que M est semblable à Jn.
(b) ⋆ On suppose que p = 2. Montrer que M est semblable à diag(J2, J2, .....J2︸ ︷︷ ︸

r termes

, 0n−2r), où r = rg(M)

(c) ⋆ ⋆ Montrer dans le cas général que Im(()u) est stable par u. En déduire qu'il existe un entier naturel
k ≥ 1, un élément (α1, α2, ..., αk) de (N∗)k véri�ant : α1 ≤ α2 ≤ ... ≤ αk, et α1 + α2 + ...+ αk = n,
tel que M soit semblable à la matrice diag(Jα1

, Jα2
, ..., Jαk

).

(d) ⋆⋆ Étudier l'unicité d'une telle décomposition.

12. ⋆⋆ On admet le théorème de théorème de Frobenius-König : Soit A ∈ Mn(R). Pourtout σ ∈ Sn,
le � serpent �(a1,σ(1), a2,σ(2), . . . an,σ(n)), admet au moins un terme nul si et seulement si A admet une
sous-matrice nulle de taille s× t avec s+ t = n+ 1.

(a) Montrer que toute matrice bistochastique admet un serpent dont tous les éléments sont strictement
positifs.

(b) Montrer qu'une matrice B bistochastique a au moins n éléments strictement positifs, et que si elle a
exactement n éléments strictement positifs, alors c'est une matrice de permutation.

(c) Montrer l'ensemble des matrices bistochastiques est l'enveloppe convexes des matrices de permuta-
tions.

(d) Montrer que l'ensemble des matrices bistochastique d'ordre n est un convexe, préciser ses points
extrémaux.

13. ⋆⋆ Démontrer le théorème de Frobenius-König.



Indication pour la question 7.
Soit n ∈ N∗. Montrer que In = In+1 si et seulement si In +Nn = In ⊕Nn, .
⋆ Montrer la décroissance de la suite (dim(Ni+1)− dim(Ni)i∈N.

• Supposons In +Nn = In ⊕Nn. Soit l'application

vn : In → In+1 ; x⃗ 7→ u(x⃗).

On a ker(vn) = N1 ∩ In ⊂ Nn ∩ In = {⃗0E} par croissance de (Ni)∈N, donc le noyau de v étant réduit à {⃗0E},
l'application vn est injective, donc dimIn+1 ≥ dimIn+1, par le théorème du rang (l'image de vn est isomorphe
à In), mais joint à l'inclusion de In+1 dans In, voila qui assure :

In = In+1.

• Supposons In = In+1. Soit l'application

w : In → I2n ; x⃗ 7→ un(x⃗).

Cette application est trivialement surjective, mais comme n ≥ 1 on a 2n ≥ n+ 1, et donc I2n = In, égalité qui
transforme la surjectivité de u en bijectivité et donc en injectivité donc :

{⃗0E} = ker(w) = In ∩Nn.

Les sous-espaces In et Nn sont donc en somme directe et donc, par la formule du rang suplémentaires.
Voila pour la première équivalence.

Ensuite, la formule du rang, appliquée à vn+1 et à vn, applications sujectives, veut que :

dim(In)−dim(In+1) = dim(ker(vn+1)) = dim(N1∩In+1) ≤ dim(N1∩In) = dim(ker(vn)) = dim(In)−dim(In+1),

par décroissance de la suite ((Ii)−)i∈N. D'où la décroissance de la suite (dim(Ii+1)− dim(Ii)i∈N, et donc, par
la formule du rang celle de (dim(Ni+1)− dim(Ni))i∈N.
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Programme de colles provisoire no3,

8 Révivions de sup.

� Déterminants, applications et calculs

9 Algèbre linéaire : révisions de MPSI, utilisation pratique de la dia-

gonalisation et trigonalisation

Par K on désigne R ou C

� Espace vectoriels, familles libres, génératrices bases, base canonique de l'ensemble des applications poly-
nômiales à p variables, somme directes, sous-espaces supplémentaires.

� Rang d'un endomorphisme, théorème et formule du rang, polynômes d'interpolation de Lagrange.
� Formes linéaires, hyperplans.
� Matrices : Voir programme précédent.
� Diagonalisation. On désigne u un endomorphisme d'un K espace vectoriel E de dimension �nie non nulle.

On note λ1, λ2, . . . , λk les valeurs propres deux à deux distinctes de u, d'ordre de multiplicité respectifs
m1,m2, . . . ,mk.
� Valeurs propres, vecteurs propres, espaces propres : les espaces propres sont en sommes directes.

Espaces propres de deux endomorphismes qui commutent.
� Polynôme caractéristique (dé�nitions, coe�cients remarquables), polynôme caractéristique d'un en-

domorphisme induit.
� Diagonalisation des matrices et des endomorphismes. Dé�nition. l'endomorphisme u diagonalisable

si et seulement si
k
⊕
i=1

Ek = E. La dimension d'un espace propre est inférieur à l'ordre de multiplicité

de la valeur propre associée. l'endomorphisme u est diagonalisable si et seulement si χu est scindé et
mi = dim(Ei), pour i = 1 . . . k.

� Trigonalisation, un endomorphisme ou une matrice est trigonalisable si et seulement si leur polynôme
caractéristique est scindé. Application à la résolution de systèmes di�érentiels et de systèmes de
relations de récurrences linéaires.

� Matrices nilpotentes, dé�nition, une matrice est nilpotente si et seulement si elle est trigonalisable à
valeurs propres nulles.

� A venir : espace vectoriels normés...

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse.

10 Questions de cours

1. Un élément de Mn(K) d'un espace vectoriel de dimension �ni est trigonalisable si et seulement si son
polynôme caractéristique est scindé sur K. Au choix du colleur, l'hérédité se fera par les endomorphismes
ou par les matrices en blocs.

2. Déterminants en blocs.

11 Exercices

1. Polynôme caractéristique d'une matrice compagnon. Dans le cas où son polynôme caractéristique est
scindé, montrer qu'elle est diagonalisable si et seulement si ses valeurs propres sont simples.



2. ⋆ On admet la question précédente Soient k ∈ N∗ et(a0, a1...an−1) ∈ Cn. Détermier l'ensemble E des
éléments u de CN, tels que pour tout p ∈ N,

up+n + an−1up+n−1 + ...+ a1up+1 + a0up = 0,

en supposant que Xn +
n−1∑
i=0

aiX
i à n racines distinctes.

Que dire de la structure de E ?

3. Soit A un élément de Mn(K) ayant n valeurs propres deux à deux distinctes.

(a) Montrer qu'un élément de Mn(K) commute avec A si et seulement si toute base qui diagonamise A
diagonalise M .

(b) Détermine l'ensembleE où :

E =

{
M ∈ M2(R),M2 +M =

(
1 1
1 1

)}
(c) En utilisant (a) déterminer le centre de GLn(R), c'est-à-dire l'ensemble des éléments de ce groupe

qui commutent avec tous les autres.

4. Commutant d'un endomorphisme

(a) Soit A un élément de Mn(K) ayant n valeurs propres deux à deux distinctes. Montrer que l'ensemble
C(A) des matrices éléments deMn(K) qui commutent avec A est un espace vectoriel dont on précisera
la dimension. Montrer que tout élément de C(A) est un polynôme en A.

(b) ⋆ Même question pour une matrice compagnon (en colonne)
(c) ⋆ Soit A un élément de Mn(K) ayant k valeurs propres deux à deux distinctes avec k < n et

diagonalisable. Déterminer la dimension de C(A). Une matrice de C(A) est-elle un polunôme en A.

5. On note les éléments de R3 en colonne. Déterminer les éléments

ϕχ
ψ

 de C1(R,R3) tels que

 2ϕ′ = ϕ+ χ+ 2ψ,
2χ′ = ϕ+ χ− 2ψ,
2ψ′ = −ϕ+ χ+ 4ψ,

6. Déterminer les valeurs propres de la matrice L suivante. Est-elle diagonalisable ?

L =


0 0 · · · 0 1
0 0 · · · 0 1
...

...
...

...
0 0 · · · 0 1
1 1 · · · 1 1


7. Déterminer le déterminant de l'élément A de Mn(C), dont tous les coe�cients diagonaux valent a et

tous les autres b. On utilisera le plolynôme caractéristique.

8. Soient n ∈ N∗ et A ∈ Mn(R) telle que ai,i = 0 pour i = 1, 2, ...n et ai,j ∈ {−1, 1} pour tout couple (i, j)
d'éléments distincts de {1, ...n}. Montrer que si n est pair, alors A est inversible.

9. ⋆ On dispose de 2n+1 cailloux. On supose que chaque sous ensemble de 2n cailloux peut se partager en
deux paquets de n cailloux de même masse. Montrer que tous les cailloux on la même masse.

10. Soient n un entier strictement positif et M un élément de Mn(C). Pour n = 3, montrer que pour tout
réel strictement positif ε, il existe une matrice triangulaire supérieure (ti,j)i=1,...,n

j=1,...,n
, semblable à M , telle

que pour tout couple (i, j) d'éléments distincts de {1, . . . , n}, |ti,j | ≤ ε.

⋆ Montrer le résultat pour n quelconque.

11. Soient z1, z2,...,zn des nombres complexes, et P le polynôme

P = (X − z1)(X − z2) . . . (X − zn)

On suppose que P est à coe�cients entier. Soit un entier q ≥ 2. Montrer que

Q = (X − zq1)(X − zq2) . . . (X − zqn)

est à coe�cients entiers.



12. ⋆� théorème de Kronecker� Montrer que si P est un polynôme unitaire de Z[X] dont les racines
complexes sont toutes de module inférieur ou égal à 1 tel que P (0) ̸= 0, alors toutes les racines de P sont
des racines de l'unité.

13. ⋆⋆ Soit A un élément de Mn(C). On considère l'endomorphisme de Mn(C),

ΨA : X 7→ AXA.

(a) Montrer que ΨA est diagonalisable si et seulement si A est diagonalisable.
(b) En supposant A réelle, montrer que l'endomorphisme de Mn(R) induit par ΨA est une isométie pour

la norme euclidienne canonique, si et seulement si A est orthogonale.

14. ⋆⋆ Soit ϕ un endomorphisme de Mn(C) qui envoie GLn(C) dans lui-même.

(a) Donner des exemples de tels endomorphismes. Montrer que ceux-ci préservent le rang.
(b) Montrer que pour tout M ∈ Mn(C), ϕ(M) ∈ GLn(C) si et seulement si M ∈ GLn(C).

Indication : Montrer dans le cas où M est non inversible qu'il existe P ∈ GLn(C) tel que pour
tout complexe λ, P − λM soit inversible.

(c) Montrer que rg(ϕ(M )) ≥ rg(M ).
(d) Montrer que ϕ conserve le rang.



MP∗ 2025-26

Programme de colles no4

12 Algèbre linéaire : révision de MPSI, utilisation pratique de la dia-

gonalisation et trigonalisation

� Programme de la semaine précédente.

13 Espaces vectoriels normés

Il s'agit d'un premier contact...
� Dé�nition de norme, espace vectoriel normé, distance à une partie non vide.
� Ouverts, fermés, intérieur, adhérence. Ouverts et fermés relativement à une partie.
� Limite d'une suite à valeurs dans un espace vectoriel normé, convergence d'une suite à valeurs dans

un produit d'espaces vectoriels normés. Caractérisation de l'adhérence par les suites, caractérisation des
fermés et des fermés relatifs par les suites.

� Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs
d'adhérence par les suites extraites.

� A venir : limite des applications, compacité...

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse.

14 Questions de cours

1. Soit (E, ∥ · ∥) un e.v.n., X un ensemble non vide. Montrer que N∞ : B(X,E) → R ; f 7→ sup
x∈X

∥f(x)∥
est une norme.

2. Caractérisation de l'adhérence par les suites. Caractérisation d'un fermé par les suites.

3. Montrer que la distance à une partie A non vide d'un e.v.n. (E, ∥ · ∥) est 1−lipschitzienne de (E, ∥ · ∥)
dans (R, | · |). Montrer que la distance d'un élément x⃗ de E à A est nulle si et seulement si x⃗ est adhérent
à A.

15 Récitation d'exercices

1. Soient (a1, . . . , an) et (b1, . . . , bn) des n-uplet de réels positifs. Soient p et q des réels tels que 1
p + 1

q = 1.

(a) On admet que pour tout a et tout b réels positifs,

ab ≤ ap

p
+
bq

q
(inégalité de Young).

Montrer que
n∑

i=1

aibi ≤
(

n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

(b) Montrer que :

(
n∑

i=1

(ai + bi)
p

)‘ 1p

≤
(

n∑
i=1

api

) 1
p

+

(
n∑

i=1

bpi

) 1
p

. Que dire du cas p = q = 2?

(c) Montrer que, np est une norme sur Kn.

2. On note E l'espace vectoriel C([a, b],R). Soit un réel p > 1. On admet que np est une norme sur Rn.
Montrer que Np est une norme sur E.

3. ⋆⋆ Montrer sans utiliser np que Np est une norme.



4. Montrer que pour tout élément f de C0 ([a, b],R), Np(f) →
n→+∞

N∞(f).

Ou version ⋆
Soient ϕ et f des applications de [a, b] dans R continues. On supose ϕ à valeurs dans R∗+ et f à valeurs
dans R+. On pose pour tout entier n ≥ 0, In =

∫
[a,b]

ϕfn.

(a) Montrer que le suite ( n
√
In)n∈N converge de limite à déterminer.

(b) Montrer que le suite
(

In+1

In

)
n∈N

converge de limite à déterminer.

5. Soit G un sous-groupe de R non trivial. Montrer que, soit il est de la forme kZ, avec k élément de R∗+,
soit il est dense dans (R, | · |) (on discutera sur la valeur de inf(G ∩R∗+)).

6. Soient A et B des parties d'un e.v.n. (E, ∥ · ∥).
(a) Prouver que si A est ouvert, alors A+B l'est également.
(b) Montrer que Z et

√
3Z sont des parties fermées de (R, | · |). La partie Z +

√
3Z est-elle également

fermée ?
7. ⋆ Soit E l'ensemble des applications de [0, 1] dans R continues, muni de la norme N1 (resp. N∞). Soit
F l'ensemble des éléments de E qui prennent en 0 la valeur 1. Quelle est l'intérieur de F ? Quelle est
l'adhérence de F ? L'étudiant fera de jolies �gures claires et en couleur.

8. Soit (E, ∥·∥) un espace vectoriel normé. Montrer que tout sous-espace vectoriel propre de E est d'intérieur
vide. Montrer que l'adhérence d'un sous-espace vectoriel est un sous-espace vectoriel.

9. ⋆ On munit ℓ∞ ensemble des suites réelles bornées de la norme N∞. On note P l'ensemble des suites
réelles ultimement nulles (polynômes). Déterminer l'adhérence de P.

Révision �

10. Soit A une matrice stochastique d'ordre n, c'est-à-dire un élément de Mn(R) à coe�cient strictements
positifs et tel que la somme des coe�cients de n'importe quelle colonne fasse 1 :
(a) Montrer que 1 ∈ sp(A) et sp(A).
(b) Soit λ une valeur propre complexe de A. Montrer que |λ| ≤ 1.
(c) ⋆ Montrer qu'il existe un élément U de E1(A) dont toutes les composantes sont strictement positives.

On pourra, pour pour (x1, ..., xn)⊤ vecteur propre associé à une valeur propre de module 1, considérer
(|x1|, |x2|, ..., |xn|)⊤.

(d) ⋆ Montrer que tout élément V de E1(A) dont toutes les composantes sont strictement positives est
colinéaire à U .
Indication : choisir λ tel que U − λV ait tous ses coe�cients positifs et un au moins nul.

11. Soit n en entier naturel non nul. pour toute n-uplet de réels (b0, b1, . . . , bn−1) on note C(b0, . . . , bn−1) la

matrice



b0 bn−1 bn−2 . . . b1
b1 b0 bn−1 . . . b2
b2 b1 b0 . . . b3
...

...
...

...
bn−2 bn−3 bn−4 . . . bn−1
bn−1 bn−2 bn−3 . . . b0


(a) Pour C1 désigne la matrice C(0, 1, 0, . . . , 0) Exprimer C(b0, . . . , bn−1) a u poyen de C1.

12. ⋆⋆ Soit E un espace vectoriel de dimension �nie ; on désignera par ∥ · ∥ une norme sur E. Soit (Un)n∈N
une suite d'ouverts denses de E. Montrer que

⋂
n∈N

Un est dense. Soit (Fn)n∈N une suite de fermés de E

telle que
⋃

n∈N
Fn = E. Montrer que

⋃
n∈N

o

Fn est un ouvert dense.

13. ⋆⋆ Soit (fn) une suite d'applications deR dansR continues, qui converge simplement vers une application
f .
(a) Soit ε un élément de R∗+. Pour tout entier nnaturel n, on pose :

Fn,ε := { x ∈ R|∀p ∈ N, (p ≥ n) ⇒ (|fn(x)− fp(x)| ≤ ε)}

et
Ωε :=

⋃
n∈N

o

Fn,ε.

Montrer que Ωε est un ouvert dense.
(b) Montrer que tout élément a de Ωε, admet un voisinage V tel que pour tout élément x de V , ∥f(x)−

f(a)∥ ≤ 3ε.
(c) Montrer que f est continue sur un Gδ dense. Application aux dérivées.



INDICATIONS

9. ⋆ On munit ℓ∞ ensemble des suites réelles bornées de la norme N∞. On note P l'ensemble des suites
réelles ultimement nulles (polynômes). Déterminer l'adhérence de P.

Preuve séquentielle

Notons ℓ0 l'ensemble des suites réelles de limite nulle. Un élément u deRN sera noté u = (u(k))k∈N, notation
qui permettra de considérere des suites (un)n∈N d'éléments deRN (suite de suites !), on notera pour tout n ∈ N,

un = (un(k))k∈N.

Soit ε ∈ R∗+.
•ℓ0 ⊂ R[X].
Soit u ∈ ℓ0. Considérons la suite de polynômes (pn)n∈N où, pour tout n ∈ N ;la suite pn est la troncarture

de u au rang n :

pn(k) = u(k) pour k = 0, 1, ..., n et pn(k) = 0 pour k ≥ n+ 1.

La suite de polynômes (pn)n∈N converge vers u. La convergence vers 0 de u nous livre un naturel N tel que
pour tout k ∈ [[N,+∞[[, |u(k)| ≤ ε.

Soit alors un entier n ≥ N . Pour tout k ∈ N, si k ≤ n alors |pn(k) − u(k)| = 0 ≤ ε, et sinon |pn(k)u(k)| =
|u(k)| ≤ ε, puisque k > n ≥ N ; Donc

N∞(pn − u) ≤ ε.

Donc u, limite de la suite de polynômes (pn)n∈N est adhérente à R[X]

•R[X] ⊂ ℓ0.

Soit v un élément de R[X], on dispose d'une suite (qn)n∈N d'éléments de R[X] de limite v et donc en
particulier d'un élément n0 tel que N∞(v − qn0

) ≤ ε. Notons d0 le degré de qn0
. Pour tout entier k, si k ≥ d0,

alors
|v(k)| ≤ |v(k)− qn0(k)|+ |qn0(k)| ≤ N∞(v − qn0) + 0 ≤ ε.

Donc v ∈ ℓ0.

Par ces deux points ; ℓ0 ⊂ R[X].

Preuve non séquentielle

•ℓ0 ⊂ R[X].
Soit u ∈ ℓ0. La convergence vers 0 de u nous livre un naturel N tel que pour tout k ∈ [[N+1,+∞[[, |u(k)| ≤ ε.

Soit p le polynôme qui coïncide avec u sur [[0, N ]] et qui est nul sur [[N + 1,+∞[[. Pour tout k ∈ N, si k ≤ N
alors |p(k)− u(k)| = 0 ≤ ε, et sinon |p(k)− u(k)| = |u(k)| ≤ ε, et donc

N∞(pn − u) ≤ ε.

Donc la boule de centre u de rayon ε rencontre R[X]. La suite u est donc adhérente à R[X].

•R[X] ⊂ ℓ0.

Soit v un élément de R[X], La boule ouverte de centre v de rayon ε rencontre R[X] en un polynôme q.
Notons d le degré de q. Pour tout entier k, si k ≥ d, alors

|v(k)| ≤ |v(k)− q(k)|+ |q(k)| ≤ N∞(v − q) + 0 ≤ ε.

Donc v ∈ ℓ0.



MP∗ 2025-26

Programme de colles no5

16 Espaces vectoriels normés

� Normes, espaces vectoriels normés, distance à une partie non vide.
� Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
� Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
� Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs

d'adhérence par les suites extraites.
� Caractérisation séquentielle de la limite.
� Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
� Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
� Continuité uniforme, applications lipschitziennes.
� A venir : Révisions sur les fonctions d'une variable réelle...
Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,

Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse.

17 Questions de cours

� Caractérisation séquentielle de la limite.

18 Récitation d'exercices

1. (a) Soit n un entier supérieur ou égal à 2. On munit Mn(R) identi�é à R(n2)de la norme ∥ · ∥∞, Montrer
que GLn(R) est un ouvert dense.

(b) Montrer que SLn(R) est un sous-groupe de GLn(R) fermé (dans Mn(R)) et non borné.
(c) ⋆ On note T le sous-ensemble de Mn(R) des matrices de transvection. Déterminer l'adhérence et

l'intérieur de T . Même question pour P le sous-ensemble de M((R)) des matrices de permutation.

2. Révision. E�et de la multiplicationà droite ou à gauche par une matrice de transvection ou de permu-
tation.

3. On munit Mn(C) de la norme ∥ · ∥∞. Montre que l'ensemble Dn des éléments de Mn(C) diagonalisables
est dense. Est il-ouvert ? fermé ?

4. ⋆ Soit un entier n ≥ 2. On dit qu'un élément M de Mn(C) est cyclique si il existe un élément X de
Mn,1(C) tel que (X,MX, ...,Mn−1X) soit libre.

(a) Montrer que l'ensemble des matrices de Mn(C) cycliques est ouvert.
(b) Soit M un élément de Mn(C) diagonalisable et λ1, λ2,...,λn ses valeurs propres. Montrer que si les

λi, i = 1, 2, ..n, sont deux à deux distincts alors M est cyclique. Étudier la réciproque.
(c) Montrer que l'ensemble des matrices cycliques de Mn(C) est dense.

5. ⋆ On munit Mn(C) de la norme ∥ · ∥∞. Soit M ∈ Mn(C). Montrer que On est dans l'adhérence de la
classe de similitude de M si et seulement si M est nilpotente.

6. On pose A = {exp(in), n ∈ Z}. Montrer que Ā = U.

Version ⋆⋆ Pour tout n ∈ N∗, posons zn =
n∏

k=1

(
1 + i

k

)
déterminer l'ensemble des valeurs d'adhérence de

la suite (zn)n∈N.

7. Soit (xn)n∈N une suite à valeurs dans l'e.v.n. (R, | · |) qui converge vers un élément ℓ de E. Soient Σαn

une série à termes strictement positifs divergente, on note (Sn)n∈N la suite de ses sommes partielles. Soit
la suite (zn)n∈N dé�nie par,

∀n ∈ N, zn =
1

Sn

n∑
k=0

αkxk,



Déterminer la limite de cette dernière suite.

8. ⋆ Soit (xn)n∈N une suite à valeurs dans l'e.v.n. (R, | · |) monotone. On suppose que le suite converge en
moyenne. Montrer qu'elle converge.
Version ⋆⋆ On dit qu'une partie A de N est de densité nulle si card(A∩{0,1,...,n})

n →
n→+∞

0. Soit (xn)n∈N

une suite de réels positifs, majorée. On note (Sn)n∈N la suite de ses moyennes.
Montrer l'équivalence des deux propositions suivantes :
i. Sn →

n→+∞
0 ;

ii. Il existe une partie A de N de densité nulle telle que an −→
n→+∞
n/∈A

0

Pour déduire ii. de i on considérera A := {p ∈ N∗|ap ≥ √
αp}, où pour tout n ∈ _N , αn :=

sup{Sp, p ≥ n}.
9. Montrer que la relation {

u0 = 1,
un+1 = ln(1 + un),

dé�nit une suite (un)n∈N. Donner la limite de cette suite puis un équivalent simple de son terme général 2.

10. Montrer que la relation {
u0 = 1,
un+1 = 1

2 ln(1 + un),

dé�nit une suite (un)n∈N. Donner la limite de cette suite, puis montrer que la suite
(
n√un

)
n∈N admet

une limite à déterminer.

11. Soit S des applications f de R dans R continues telles que pour tout x et tout y réels,

f(x+ y) = f(x) + f(y).

Déterminer S par une des deux méthodes suivantes au choix du colleur :
� en utilisant la densité de Q ;
� en régularisant par intégration.

12. ⋆ Soit S des applications f de R dans R continues telles que pour tout x et tout y réels,

f(x+ y) + f(x− y)) = 2f(x)f(y).

(a) Soit f un élément de S non nul. Montrer que f(0) = 1 et que f est paire.
(b) Soit f un élément de S non nul est indé�niment dérivable. Montrer que pour tout (x, y) ∈ R2,

f ′′(x)f(y) = f(x)f ′′(y).

(c) Montrer que tout élément de S est indé�niment dérivable. Déterminer S.

13. ⋆⋆ Soit f ∈ L(Rn,Rp). Montrer que f est surjective si, et seulement si, l'image de tout ouvert de Rn

par f est un ouvert de Rp ?

14. (a) ⋆⋆Reporté semaine 6. Soit (fn)n∈N une suite de fonctions d'une partie E de R, dénombrable
dans R, telle que pour tout n ∈ N, fn soit bornée par 1. Montrer que (fn)n∈N admet une suite
extraite qui converge simplement 3 sur E vers une application f de E dans R.

(b) Soit (gn)n∈N une suite d'applications de R dans [−1, 1], toutes croissantes. Montrer qu'il existe une
suite extraite de (fn)n∈N qui converge simplement sur R, (Théorème de sélection de Helly).

2. Dans cet exercice et le suivant, les élèves doivent connaître la méthode sans pour le moment, en comprendre l'origine.

3. On dit qu'une suite (gn)n∈N d'élément de RE converge simplement vers un élément g de RE, si pour tout réel x la suite

(gn(x))n∈N converge de limite g(x).
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19 Révision du cours sur les fonctions d'une variable réelle de MPSI

� Théorème de la limite monotone.
� Théorème des valeurs intermédiaires. Théorème de l'homéomorphisme croissant.
� Lemme de Rolle, inégalité des accroissements �nis, théorème du prolongement Cn.
� etc.
� Fonction. convexes.

� Dé�nition, interprétation géométrique en terme de corde, formule de Jansen.
� Lemme des trois pentes, caractérisation de la convexité par la croissance des pentes.
� Caractérisation des fonctions convexes dérivables et deux fois dérivables. Une fonction dérivable

convexe est au dessus de ses tangentes, position par rapport à une sécante.
� Inégalité de convexité ex ≥ 1 + x, ln(1 + x) ≤ x, inégalité de Young, Inégalité de Hölder.
� A venir. Espace vectoriels normmés, deuxième partie.

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse.

20 Questions de cours

1. Soit f une application continue sur un intervalle I telle que sa restriction à I \ {a} soit dérivable. On
suppose que f ′ admet en a une limite épointé ℓ �nie ou non. Montrer que

f(t)− f(a)

t− a
−→

t→a,t̸=a
ℓ.

Cas où ℓ est un réel.

2. Lemme des trois pentes.

21 Exercices

1. Enoncer le théorème de Darboux et donner en une preuve utilisant le théorème de la borne atteinte.

2. Soit f une application de R dans R dérivable qui admet 0 comme limite en +∞ et −∞. Montrer que f ′

s'annule, par l'une des deux méthodes suivantes laissées au choix du coleurs :
� en utilisant le théorème de la borne atteinte (et un joli dessin) ;
� en e�ectuant un changement de variable.

3. ⋆ Inégalité de Kolmogorov �

(a) Soit f une application de R dans C de classe C2. On suppose que f et f ′′ sont bornée. On note
M0 := sup

x∈R
|f(x)| et M2 := sup

x∈R
|f ′′(x)|.

Montrer que pour tout réel x,
|f ′(x)| ≤

√
2M0M2.

On pourra appliquer l'inégalité de Taylor lagrange entre x et x+ h et entre x et x− h, pour tout réel
h > 0.

(b) ⋆⋆ Soient un entier naturel n ≥ 2 et f une application de R dans C de classe Cn. On suppose que f
et f (n) sont bornée. Pour k = 0, 1, . . . , n on note Mk := sup

x∈R
|f (k)(x)|, sous réserve que l'application

f (k) soit bornée.
Montrer que pour tout élément k de {0, . . . , n}, f (k) est bornée et

Mk ≤ 2
k(n−k)

2 M
1− k

n
0 M

k
n
n , (inégalité de Kolmogorov).



4. Soit f une application de R dans R convexe et non constante. Montrer que f tend vers +∞ en +∞ ou
en −∞.

5. Soit f une application de R dans R strictement convexe continue 4. On suppose que f(x) tend vers +∞
lorsque x tend vers +∞ et −∞. Montrer que f atteint sa borne supérieure en un et un seul point a de
R. Montrer que si f est de plus dérivable, alors a est caractérisé par f ′(a) = 0.

6. ⋆ Soit f une application de R dans R de classe C1 dérivable et strictement convexe. On suppose de plus
que

lim
x→±∞

f(x)

|x|
= +∞. (2)

Montrer que f ′ est un homéomorphisme de R sur R.
Version ⋆⋆ On ne suppose en plus f que dérivable et non de classe C1.

7. Soient n un entier naturel supérieur ou égal à 1 et f une application d'un intervalle I dans R de classe
Cn. On suppose que f admet n+ 1 zéros comptés avec leurs ordres. Montrer que f (n) s'annule.

8. Soit n un entier naturel, et soit f une application d'un segment [a, b] (a < b) à valeurs réelles, de classe
Cn+1, soient en�n (x0, x1, . . . , xn) , n+ 1 points deux à deux distincts de [a, b].

(a) Montrer qu'il existe un unique polynôme à coe�cients réels de degré inférieur ou égal à n, que nous
noterons P , qui coïncide avec f en chacun des points xi

(b) Montrer que pour tout élément x de [a, b] il existe un élément y de [a, b] tel que :

(f − P ) (x) = f (n+1) (y) .

n∏
i=0

(x− xi)

(n+ 1)!
,

9. ⋆ � Égalité de Taylor Lagrange � REPORTÉE semaine 7. Soit n un entier naturel, et soit f
une application d'un segment [a, b] (a < b) à valeurs réelles, n + 1 fois dérivable, soit en�n x0 un point

de [a, b]. Montrer que pour tout élément x de [a, b], il existe un élément y de
←→

]x0, x[, tel que :

f(x) =

n∑
i=0

(x− x0)
i f

(i)(x0)

i!
+ (x− x0)

n+1 f
(n+1)(y)

(n+ 1)!
.

Dans le cas où f est de classe Cn+1 retrouver ce résultat par la formule de Taylor avec reste intégrale.

10. ⋆ Inégalité de Jensen �
Soit f une application d'un segment [a, b], non réduit à un point, à valeurs réelles, continue et convexe.
Soient x une application de [0, 1] à valeurs dans [a, b] continue et α une application de [0, 1] à valeurs
dans R+ continue telle que : ∫ 1

0

α(t)dt = 1.

(a) Montrer que :
∫ 1

0
α(t)x(t)dt ∈ [a, b].

(b) Montrer que f
(∫ 1

0
α(t)x(t)dt

)
≤
∫ 1

0
α(t)f(x(t))dt.

11. ⋆ �Inégalité de Höfding � Soit (Xi)1≤i≤n une suite de variables aléatoires mutuellement indépen-
dantes centrées, et (ci)1≤i≤1 une suite de réels telles que pour i = 1, 2, ..., n on ait presque sûrement
|Xi| ≤ |ci|. On note Sn = X1 +X2 + ...Xn et Cn = c21 + c22 + ...c2n.

(a) Montrer que pour tout x ∈ [−1, 1] et tout réel t, exp(tx) ≤ 1−x
2 exp(−t) + 1+x

2 exp(t).

(b) Soit X une variable aléatoire centrée tel que |X| ≤ 1, p.s. Montrer que E(exp(tX) ≤ exp
(

t2

2

)
.

(c) En déduire que E (exp(tSn)) ≤ exp
(

t2

2 Cn

)
.

(d) Montrer que P(|Sn| > ε) ≤ 2 exp
(
−ε2
2Cn

)
.

12. ⋆ Soit f une application de R dans R à valeurs positives ou nulles de classe C2.
Soit x0 un zéro de f .

(a) Montrer que f ′(x0) = 0.
(b) Montrer que

√
f est dérivable en x0 si et seulement si f ′′(x0) = 0.

4. la continuité des applications convexes sur l'intérieur de leur intervalle de dé�nition n'est pas au programme



13. ⋆⋆

(a) Montrer qu'une fonction continue d'un segment [a, b] dans R qui admet en tout point un maximum
est constante.

(b) Soit f une application de R dans R. On appelle valeur maximale, tout réel y tel qu'il existe un réel
x en lequel f admet un maximum local. Montrer que l'ensemble des valeurs maximales de f est au
plus dénombrable.

(c) Montrer qu'une application continue de [a, b] dans R qui admet en tout point un extremum local est
constante.

14. (a) ⋆⋆ Soit (fn)n∈N une suite de fonctions d'une partie E deR, dénombrable dansR, telle que pour tout
n ∈ N, fn soit bornée par 1. Montrer que (fn)n∈N admet une suite extraite qui converge simplement 5

sur E vers une application f de E dans R.
(b) Soit (gn)n∈N une suite d'applications de R dans [−1, 1], toutes croissantes. Montrer qu'il existe une

suite extraite de (fn)n∈N qui converge simplement sur R, (Théorème de sélection de Helly).

5. On dit qu'une suite (gn)n∈N d'élément de RE converge simplement vers un élément g de RE, si pour tout réel x la suite

(gn(x))n∈N converge de limite g(x).
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Supplément spécial vacances.

22 Espaces vectoriels normés

� Normes, espaces vectoriels normés, distance à une partie non vide.
� Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
� Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
� Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs

d'adhérence par les suites extraites.
� Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
� Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
� Continuité uniforme, applications lipschitziennes.
� Compacité. Compacts, les compacts sont fermés bornés. Compacité des segments de (R| · |). Les compacts

de (Kn, n∞) sont les parties fermées bornées (K = R ou C). Image d'un compact par une application
continue, théorème de Heine.

� Connexité par arcs : convexes (caractérisation par le barycentre de n points), parties étoilées, composantes
connexes par arcs, image par une application continue d'un connexe par arcs (théorème de la valeur
intermédiaire).

Les ensembles convexes seront au centre du prochain programme
� A venir : intégrales convergentes. Chapitre III sur les e.v.n.

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le
Grognec, Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas,
Aiden Legal, Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille
-Degorce.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le
Grognec, Augustin Ravasse, Martin Pina-Silas, Lucas Pan.

23 Questions de cours

1. Compacité d'un segment de (R, | · |). Par dichotomie ou par le lemme du soleil levant au choix du coleur.

2. Une suite d'un espace vectoriel normé (E, ∥ · ∥) à valeurs dans un compact K converge si et seulement si
elle admet une et une seule valeur d'adhérence.

24 Récitation d'exercices

1. Montrer que toute application de R dans R continue et périodique est uniformément continue.

2. Soit f une application de [0, 1] dans R de classe C2. On suppose que : f(0) = f ′(0) = f ′(1) = 0 et que
f(1) = 1.

(a) En utilisant une formule de de Taylor entre 0 et 1, montrer qu'il existe un élément c de [0, 1] tel que
|f ′′(c)| ≥ 2.

(b) En utilisant une formule de Taylor entre 0 et 1
2 et 1

2 et 1, montrer qu'il existe un élément d de [0, 1]
tel que |f ′′(d)| ≥ 4.

(c) Un chien à l'arrêt s'élance en ligne droite et dix seconde plus tard, s'arrète 100 m plus loin. Montrer
qu'au cours de sa course notre compagnon à quatre pattes à eu une accélération supérieure ou égale
à 4 ms−2.

3. Soit F une partie fermée d'un espace vectoriel normé (E, ∥ · ∥) de dimension �nie. Soient k un élément de
[0, 1[, et f⃗ une application de F dans F k-contractante. On note (xn)n∈N la suite des itérés d'un point
a⃗ de K par f .

(a) Montrer que f admet un et un seul point �xe, en utilisant ou sans utiliser les séries, au choix du
colleur.



(b) ⋆ Montrer que le résultat demeure si l'on suppose qu'il existe un entier N ≥ 1 tel que f⃗N soit
k-contractante.

(c) ⋆ Dans le cas ou F est un compact étoilé, montrer que le résultat demeure en ne supposant plus que
f est k-contractante mais seulement 1-lipschitzienne.

4. Soit F un fermé d'un espace vectorel de dimension �nie. Montrer que pour tout élément a⃗ de E, il existe
un élément f⃗ de F tel que d(⃗a, F ) = ∥f⃗ − a⃗∥.

On munit Mn(R) de la norme euclidienne canonique (norme de Frobenius). Montre que SLn(R),
ensemble des éléments de Mn(R) de déterminant 1, est un sous-groupe de GLn(R)), qui est fermé. Est-il
compact ? Montrer qu'il existe un élément de SLn(R) de norme minimale.

5. Théorème de Riestz. ⋆⋆ Montrer que la boule unité d'un espace vectoriel de dimension in�nie n'est
pas compact.

6. Darboux.⋆ Soit f une application d'un intervalle I de R dans R, dérivable.

On note T = {(x, y) ∈ I2, y < x} et on considère ψ : T → R ; (x, y) 7→ f(y)−f(x)
y−x . Montrer que

ψ(T ) ⊂ f ′(I) ⊂ ψ(T ). en déduire que f ′(I) est un intervalle.

7. Montrer que GLn(R) n'est pas connexe par arcs mais que GLn(C) l'est.

8. Montrer que On(R) n'est pas connexe par arcs mais que SO2(R) l'est.

9. (a) Soit A un connexe par arcs d'une e.v.n. (E, ∥ · ∥). Montrer que toute partie de A relativement ouverte
et fermée est soit A soit vide.

(b) Soit U un ouvert d'un e.v.n. (E, ∥ · ∥) connexe par arcs. Montrer que U est � connexe par lignes
brisées �.

10. ⋆ Soit K un compact d'une e.v.n. (E, ∥ · ∥).
(a) Soit ε un réel strictement positif. Montrer que K est inclus dans la la réunion d'un nombre �ni de

boules centrées en des points de K et de rayon ε.
(b) ⋆⋆ Montrer que K possède une partie dense dénombrable.

11. ⋆ Déterminer les composantes connexes par arcs de GL2(R).

12. ⋆⋆ Soit A un élément de Mn(R) non inversible. Montrer que GLn(R) ∪ {A} est connexe par arcs.

13. ⋆ Soit P un polynôme unitaire de R[X] de degré d. Montrer qu'il est scindé sur R[X] si et seulement
si pour tout complexe z, |P (z)| ≥ |Im(z)|d. En déduire que l'adhérence dans Mn(R) des matrices
diagonalisables est l'ensemble des matrices dont le polynôme caractéristique est scindé.

14. Soit f une application de R+ dans R, tel que pour tout x ∈ R+, f(nx) →
n→+∞

+0.

(a) On suppose f uniformément continue. Montrer que lim
+∞

= 0.

(b) ⋆⋆ On ne suppose plus f que continue.
Soit ε ∈ R∗+. Pour tout entier n ≥ 0, on pose Fn = {x ∈ N;∀p ∈ N, p ≥ n =⇒ |f(px)| ≤ ε}.

i. Montrer qu'il existe N ∈ N, tel que FN soit d'intérieure non vide.
ii. Conclure.

(c) ⋆⋆ Donner un exemple d'application f qui n'admet pas 0 comme limite en +∞.

15. ⋆⋆ � Théorème de Glaeser (1963) � Soit f une application de R dans R à valeurs positives ou
nulles de classe C2.

(a) On suppose dans cette question que f(0) = f ′(0) = f ′′(0) = 0. Soient α un élément de R∗+ et
M(α) = sup

t∈[−2α,2α]
(|f ′′|).

Soit x ∈ [−α, α]. Montrer que pour tout h ∈ [−α, α],

M(α)
h2

2
+ hf ′(x) + f(x) ≥ 0.

On suppose que M(α) est non nul.

Montrer que −f
′(x)

M(α) est élément de [−α, α].

(b) En étudiant sur [−α, α] le signe du trinôme P , où P =M(α)X
2

2 +Xf ′(x) + f(x),

Montrer que f ′2(x) ≤ 2f(x)M(α), que M(α) soit nul ou non.
(c) Montrer que

√
f est de classe C1 si et seulement si pour tout zéro z de f , f ′′(z) = 0.



Correction de la question 12
Notons r le rang de A. On dipose donc de matrices inversibles P et Q telles que :

PAQ−1 = Jr.

Notons C = GLn(R) ∪ {A} et C ′ = GLn(R) ∪ {Jr}. Par inversibilité de P et Q on a C = Φ(C ′), où

Φ : Mn(R) → Mn(R) ; M 7→ P−1MQ.

Or l'application Φ est continue, bientôt on écrira � car linéaire en dimension �nie � , aujourd'hui disons que ses
composantes dans la base canonique sont polynomiales en les coordonnées de la variable dans la base canonique.
Donc il su�t de prouver la connexité par arcs de C ′ pour avoir celle de C. Faisons.

On note R la relation dé�nie sur C ′ ainsi : un élément M de C ′ est en relation avec un élément M ′ de C ′

si, par dé�nition, il existe un chemin joignant M à M ′ de support inclus dans C ′. Le cours a�rme que R est
une relation d'équivalence.

D'abord JrRdiag(1, 1, ..., 1,−1). En e�et l'application

Γ : [0, 1] → Mn(R) ; t 7→ diag(Ir, tIn−r−1,−tI1)

relie Jr à diag(1, 1, ..., 1,−1), est continue (ses composantes dans la base canonique sont a�nes) et est à valeurs
dans C ′, puisque Γ(0) = Jr et que pour tout t ∈]0, 1] le déterminant de Γ(t) vaut −tn−r−1 et est donc non nul.

Ensuite sur le même principe on montre que JrRIn.
Donc la clase d'équivalence pour R contient In et diag(1, 1, ..., 1,−1) mais comme GL±n (R) est connexe par

arcs, elle contient GL+
n (R) et GL+

n (R) donc C ′ entier. Donc C ′ est connexe par arcs.
Donc C est bien connexe par arcs.
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25 Espaces vectoriels normés

Révisions !
� Normes, espaces vectoriels normés, distance à une partie non vide.
� Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
� Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
� Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs

d'adhérence par les suites extraites.
� Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
� Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
� Continuité uniforme, applications lipschitziennes.
� Compacité. Compacts, les compacts sont fermés bornés. Compacité des segments de (R| · |).Compacts

de (Kn, n∞) . Image d'un compact par une application continue, théorème de Heine.
� Connexité par arcs : convexes, parties étoilées, composantes connexes par arcs, image par une application

continue d'un connexe par arcs (théorème de la valeur intermédiaire).

26 Intégrale sur un intervalle quelconque

Il s'agit d'un premier contact les exercices doivent rester élémentaires, la prochaine semaine
sera consacrée aux intégrales généralisées.

� Intégrale convergente, absolument convergente, fonctions intégrables. L'absolue convergence assure la
convergence.

� Théorèmes de comparaison,
� à vanir : intégration des relations de comparaison, changement de variables et intégrations par parties

dans une intégrale généralisée.
Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,

Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

27 Récitation d'exercices

1. Soit C un convexe d'un e.v.n (E, ∥ · ∥). Montrer que l'intérieur et l'adhérence de C sont convexes.

2. ⋆⋆ Soient X un convexe de Rn non vide, a un point intérieur à X et b un point adhérent à X. Montrer
que [a, b[ est inclus dans l'intérieur de X.
Indication : Étudier pour un point x de [a, b[ l'image d'une boule de centre a par une homothétie de
centre x.

3. Soient un entier n ≥ 2 et une application f de Rn dans R continue.

(a) On suppose qu'il existe un réel a tel que f−1({a}) soit un singleton. Montrer que f atteint en f−1({a})
son maximum ou son minimum.

(b) ⋆ On supose qu'il existe un réel b tel que f−1({b}) soit compact. Montrer que f atteint son maximum
ou son minimum.

4. � projection sur un convexe �

(a) Soit C un convexe non vide fermé de Rn, muni de sa structure euclidienne canonique. Soit z un
élément de Rn. Montrer qu'il existe un et un seul point c de C tel que : ∥z − c∥ = d(c, C). Le point
c sera noté p(z).



(b) Soit y un élément de C, montrer que : ⟨y − p(z) | z − p(z)⟩ ≤ 0.

(c) ⋆ Soient a et b des éléments de Rn. Montrer que : ∥p(a)− p(b)∥ ≤ ∥a− b∥.

5. ⋆ On garde le cadre de l'exercice précédent. On appelle hyperplan d'appui de C en un point a de C tout
hyperplan H de Rn passant par a tel que C soit inclus dans un des demi-espaces fermés dé�nis par H.

(a) On suppose que z n'appartient pas à C. Montrer que C admet en p(z) un hyperplan d'appui
(b) Montrer que p(Rn − C) ⊂ Fr(C)

(c) Soit f un point de la frontière de C. Montrer que C admet en f un hyperplan d'appui.

6. ⋆ ⋆ On garde le cadre de la question précédente.
Un point a de C est dit extrémal si C − {a} est convexe, autrement dit si a n'est pas le milieu de

deux points distincts de C.
Montrer que C est l'enveloppe convexe de ses points extrémaux (Théorème de Krein-Milman).

7. ⋆⋆ Soit K un compact d'un e.v.n. (E, ∥ · ∥) de dimension in�nie. Montrer que E \K est connexe par arcs.

8. ⋆ On ne suppose plus C compact mais au contraire, non borné. Montrer que C contient une demi-droite.

9. (a) On appelle enveloppe convexe d'une partie A non vide d'un espace vectoriel normée (E, ∥ · ∥), notée
conv(A) l'intersection de tous les convexes inclus contenant A, c'est donc le plus petit convexe conte-
nant A (on fera un dessin). Montrer que conv(A) est l'ensemble de tous les barycentres à coe�cients
positifs de points de A.

(b) ⋆ On suppose E de dimension n. Montrer que conv(A) est l'ensemble de tous les barycentres à
coe�cients positifs de n+1 points de A (on illustrera la preuve par une �gure). Montrer que si A est
compact alors conv(A) est compact. Donner un exemple de partie A fermée telle que conv(A) ne le
soit pas.

10. Étudier la convergence de l'intégrale suivante :
∫ +∞
0

sin(x) sin
(
1
x

)
dx.

11. Montrer la convergence et donner la valeur des l'intégrales suivantes :∫ +∞

0

exp(−t)− exp(−2t)√
t

dt ;

∫ +∞

0

exp(−t)− exp(−2t)

t
dt

12. Soit Γ la fonction de la variable réelle x dé�nie par Γ(x) =
∫ +∞
0

tx−1e−tdt.

(a) Déterminer le domaine de dé�nition D de Γ.
(b) Donner pour tout x ∈ D une relation entre Γ(x+ 1) et Γ(x).

En déduire la valeur de Γ(n) pour tout entier n élément de D.

13. ⋆⋆ Égalité des accroissements finis vectorielle
Soit F une application d'une application d'un intervalle ouvert I non vide à valeurs dans Rn de classe

C1 et soient a et b des éléments de I tels que a < b. Notons d la dimension de l'espace a�ne engendré
par F ([a, b]). Alors il existe c1, c2,...,cd+1 des éléments de [a, b], λ1, λ2,...,λd+1 des réels positifs ou nuls
de somme 1, tels que

F (b)− F (a)

b− a
=

d+1∑
i=1

λiF (ci).
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28 Révision sur les calculs de primitives

29 Intégrale sur un intervalle quelconque

� Intégrale convergente, absolument convergente, fonctions intégrables. L'absolue convergence assure la
convergence.

� Théorèmes de comparaison, intégration des relations de comparaison.
� Changement de variables et intégrations par parties dans une intégrale généralisée.
� À venir espaces vectoriels normés ch. III (Applications linéaires continues, normes équivalentes, espace

de dimension �nie).

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline
Wadier.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

30 Question de cours

1. Soient ϕ et ψ des applications de [a, b[ dans R, à valeurs positives. On suppose que ϕ(t) = o
t→b

(ψ(t)) et

que ϕ est non intégrable. Alors ψ est non intégrable et∫ x

a

ϕ(t)dt = o
x→b

(∫ x

a

ψ(t)dt

)
.)

31 Exercices

1. (a) Montrer que pour tout entier naturel n, l'application fn, dé�nie par

fn : ]0, 1[→ R ; x 7→ xn

4
√
x3(1− x)

,

est intégrable.
(b) Au choix du colleur un des deux points suivants.

• Pour tout entier naturel n, on pose In =
∫
]0,1[

fn. Montrer que pour tout entier naturel n ≥ 1, on

a In−1 − In = 3
4n−3In.

• Calculer I0 et en déduire l'expression de In pour tout entier naturel n.

2. Déterminer la limite éventuelle de la suite (Pn)n∈N∗ , où pour tout entier naturel n non nul,

Pn =

(
n∏

k=1

(
1 +

k

n

)k
) 1

n2

.

ou version ⋆ Déterminer la limite éventuelle de la suite (Sn)n∈N∗ , où pour tout entier naturel n non nul,

Sn =

n∑
k=1

sin

(
k

n

)
sin

(
k

n2

)
.

3. � Soient ω l'application R → R ; t 7→ exp (−t2) Soit H l'ensemble des applications f de R dans R
continues telles que f2ω soit intégrable.



(a) Montrer que H est un espace vectoriel qui contient les applications polynômes. et que l'application

Φ : H2 → R ; (f, g) 7→
∫
R

fgω

est bien dé�nie et et un produit scalaire sur H. On le note ⟨·|·⟩ et N2 la norme associée.
(b) Montrer que tout élément f de H, l'intégrale

∫
R
fω converge et qu'il existe un réel c tel que∫

R

fω ≤ cN2(f).

4. (a) Soit g une application d'un segment [a, b] dans R, de classe C1 . Montrer que
∫ b

a
g(t) sin(nt)dt tend

vers 0 lorsque n tend vers +∞.
(b) ⋆ Pour tout entier n ≥ 1, on pose

Jn :=
1

n

∫ π
2

0

sin2(nt)

sin2(t)
dt.

Justi�er l'existence de cette intégrale puis étudier la limite éventuelle de la suite (Jn)n∈N.

(c) Soit f une application de R dans R, de classe C1 intégrable. Montrer que
∫ +∞
−∞ f(t) sin(nt)dt tend

vers 0 lorsque n tend vers +∞.

5. Déterminer des équivalents simples, lorsque x tend vers +∞, des quantités suivantes :∫ +∞

x

e−
1
t

tc
dt, pour c élément de ]1,+∞[,

∫ x

0

et
2

dt,
∫ x

e

dt
ln t

.

⋆ Donner un développement asymptotique à tout ordre de
∫ x

0
et

2

dt, lorsque x tend vers +∞.

6. ⋆⋆ Soit f une application de R+ dans R, de classe C1 et intégrable.

(a) Montrer que f n'est pas nécessairement bornée.
(b) On supose de plus que f ′ est de carré intégrable (sur R+). Montrer que f est bornée.

7. Soit f une application de R+ dans R, continue et bornée. On admet que
∫ +∞
−∞ e−x

2

dx =
√
π. Pour tout

entier naturel n, justi�er l'existence de Jn = n
∫ +∞
0

e−n
2t2f (t)dt.

(a) Montrer, par un raisonnement élémentaire que la suite (Jn)n∈N a une limite à déterminer.
(b) (5/2) Reprendre la question précédente en utilisant le théorème de convergnce dominée.

8. ⋆⋆ Soient f une application de classe [0, 1] dans R, de classe C∞ et ne s'annulant pas en 0. et

g : R+ → R ; t 7→
∫ 1

0

f(x)

1 + tx
dx.

Donner un équivalent simple h(t) de g(t) lorsque t tend vers +∞. Montrer que g(t) = h(t) + O
t→+∞

(
1
t

)
.

9. ⋆ Soit f une application de R+ dans R, à valeurs positives ou nulles, continue. On suppose f intégrable.

(a) A-t-on lim
+∞

f = 0?

(b) On suppose de surcroît f décroissante. Montrer que xf(x) →
x→+∞

0. Cette dernière condition su�t-elle

à prouver l'intégrabilité de f ?
(c) Énoncer et prouver un résultat analogue pour une série à termes positifs.
(d) ⋆⋆ On ne suppose plus f décroissante. Montrer qu'il existe une suite (xn)n∈N de réels qui tend vers

+∞ telle que : xnf(xn) →
n→+∞

0

En déduire que pour tout application g de R+ dans R de classe C1, et de carré intégrable,∫ +∞

0

g2(x)dx ≤ 2

√∫ +∞

0

x2g2(x)dx

∫ +∞

0

g′2(x)dx ≤ +∞

10. Pour tout entier naturel n non nul, on pose In :=

∫ 1

0

xn

1 + x2
dx.

(a) Calculer I2 et I3.
(b) Donner la limite de la suite (In)n∈N.
(c) Donner un développement limité à l'ordre 2, en 1

n de In, lorsque n tend vers +∞ (c'est-à-dire une
expression de la forme In = a0 + a1

1
n + a2

1
n2 + o

(
1
n2

)
(n→ ∞)).



(d) Exprimer pour tout entier naturel n, In comme la somme d'une série numérique.

11. ⋆ � Inégalité de Hardy �
(Inégalité de Hardy faible).
Soit f ∈ C0([0, 1],R) Pour tout x ∈]0, 1], F (x) = 1

x

∫ x

0
f(t)dt et F (0) = f(0). Montrer que :∫ 1

0

F 2(x)dx ≤ 4

∫ 1

0

f2(x)dx.

12. ⋆ Soit f un élément de C2(R). On suppose que f et f ′′ sont de carrés intégrables. Montrer que f ′ est de
carré sommable.
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32 Révision de sup sur les séries

33 Espaces vectoriels normés, �n de la trilogie

� Normes, espaces vectoriels normés, distance à une partie non vide.
� Ouverts fermés, intérieurs adhérences. Ouverts et fermés relativement à une partie.
� Limite d'une suite à valeurs dans un espace vectoriel normé. Caractérisation de l'adhérence par les suites.
� Valeurs d'adhérence d'une suite à valeurs dans un espace vectoriel normé. Caractérisation des valeurs

d'adhérence par les suites extraites.
� Limite et continuité d'une application d'une partie d'un e.v.n. à valeurs dans un e.v.n.
� Caractérisation de la continuité par les images réciproques d'ouverts (de fermés).
� Continuité uniforme, applications lipschitziennes.
� Compacité. Compacts, les compacts sont fermés bornés. Compacité des segments de (R| · |). Les compacts

de (Kn, n∞) sont les parties fermées bornées (K = R ou C). Image d'un compact par une application
continue, théorème de Heine.

� Connexité par arcs : convexes (caractérisation par le barycentre de n points), partie étoilées, composantes
connexes par arcs, image par une application continue d'un connexe par arcs (théorème de la valeur
intermédiaire).

� Applications linéaires continues.
� Normes équivalentes ; cas des espaces vectoriels de dimension �nie.
� Espaces vectoriels de dimension �nie, convergence des suites et des applications, continuité des applica-

tions à valeurs dans un espace de dimension �nie, compacts d'un espace de dimension �nie, théorème de
Bolzano-Weierstrass.

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

34 Questions de cours

1. Continuité d'une application linéaire : quatre propriétés équivalentes.

2. Dé�nition de la norme subordonnée d'une application linéaire d'un e.v.n. dans un autre (preuve complète).

3. ⋆⋆ Toutes les normes en dimension �nie sont équivalentes.

35 Récitation d'exercices

1. Montrer que tout sous espace vectoriel F de dimension �nie d'un espace vectoriel normé (E, ∥ · ∥) est
fermé.

2. ⋆Montrer qu'une forme linéaire dé�nie sur un espace vectoriel normé (E, ∥·∥) est continue si et seulement
si son noyau est fermé.

3. Montrer que N : Mn(C) → R+ ;A 7→ max
j=1,...,n

(
n∑

i=1

|ai,j |
)
est une norme subordonnées à une norme sur

M,,n(1)C à préciser, lorsque l'on identi�e les éléments de Mn(K) et les endomorphismes de Mn,1(C)
canoniquement associés.

Ou bien, au choix du colleur, même question pour N ′ : Mn(C) → R+ ;A 7→ max
i=1,...,n

(
n∑

j=1

|ai,j |

)
.

4. ⋆ Montrer que NF : Mn(R) → R+, ;A 7→ (tr(M⊤M))
1
2 est une norme d'algèbre. Est elle une norme

subordonnée ?



5. Par E sera désigner l'espace vectoriel des applications de [0, 1] dans R, continues. Soient g un élément
de E et L la forme linéaire

E → R ; f 7→
∫
[0,1]

gf.

On munit R de | · |. Montrer la continuité de L et déterminer sa norme dans les cas suivants.

(a) On munit E de la norme N2.
(b) ⋆ On munit E de la norme N∞.
(c) On munit E de la norme N1 et on prend pour g = sin

(
π
2 ·
)
.

6. Etudier les séries :
∑
n≥2

1
n(lnn)β

,
∑
n≥2

ln(ln(n))
n(lnn)2

∑
n≥2

1
n(lnn)1/2 ln(ln(n))

,
∑
n≥2

1
n lnn(ln(ln(n)))3

, β désigne un réel.

7. Nature des séries :
∑
n≥1

nlnn

(lnn)n ;
∑

sin(π(2 +
√
3)n).

8. (a) En comparant les sommes partielles de la série harmonique à une intégrale montrer que :
n∑

k=1

1

k
∼

n→+∞
lnn.

(b) ⋆ Posons pour tout élément n de N∗, xn :=

n∑
k=1

1

k
− lnn. Montrer que pour que pour tout entier k

supérieur ou égal à 1,
1

1 + k
≤
∫ k+1

k

dt

t
≤ 1

2

(
1

k
+

1

1 + k

)
.

En déduire que la suite (xn)n∈N∗ converge vers un réel γ supérieur ou égal à 1
2 .

9. Soit (un)n∈N une suite décroissante qui converge vers 0. Montrer que la série
∑
un converge si et seule-

ment si
∑

10nu10n converge (On utilisera la théorie des famille sommables). En déduire la nature des la
séries

∑
n≥2

1
n(ln(n))a et

∑
n≥2

1
n ln(n)(ln(ln(n)))a , où a est un réel.

10. Soit f une application de ]0, 1] dans R, continue, décroissante et intégrable.

Déterminer la limite de la suite (In)n∈N, où pour tout entier n ≥ 1 on a posé 1
n

n∑
i=1

f
(
i
n

)
.

11. ⋆⋆ Notons E = C0([0, 1],R). Soient un réel C > 0 et F un sous espace vectoriel de E tel que :

∥f∥∞ ≤ C∥f∥2, (3)

pour tout élément f de F.

(a) Montrer que les restrictions de ∥ · ∥2 et ∥ · ∥∞ à F sont équivalentes.
(b) Montrer que F est de dimension �nie inférieure ou égale à C2.

(c) Donner un exemple de sous-espace vectoriel F de E de dimension n et véri�ant (3) avec C = n
1
2 .

12. :

(a) ⋆⋆ On note E l'ensemble des applications de R dans R continues. Soient u et v des éléments de E.
On suppose u bornée et v intégrable. Montrer que uv est intégrable.

On suppose que pour tout élément w de E intégrable, uw est intégrable. Montrer que u est borné.
Raisonner par l'absurde

(b) ⋆ Soient u et v des éléments de RN. On suppose u bornée et v sommable. Montrer que uv est
sommable.

On suppose que pour tout élément w de RN sommable, uw est sommable. Montrer que u est
borné.

Raisonner par l'absurde

13. ⋆⋆ Soit (H, ⟨·|·⟩) un espace préhilbertien dans lequel toute séries absolument convergent converge. On
munira H de la norme euclidienne ∥ · ∥ associée au produit scalaire.

Soit f un endomorphisme continue de H tel qu'il existe un réel α > 0 tel que : ∀x ∈ H, α∥x∥2 ≤
⟨f(x)|x⟩.
(a) Montrer que im(f) est fermée Et que (im(f))⊤ = {0H}
(b) En déduire que f est un automorphisme.
(c) Montrer que f−1 est continu et que ∥f−1∥op ≤ 1

α .
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36 Processus sommatoires discrets

� Dé�nition de la convergence d'une série à valeurs dans un e.v.n. (E, ∥ · ∥). Dans un espace vectoriel de
dimension �nie la convergence absolue assure la convergence.

� Séries à termes positifs. Caractérisation de la convergence par la suite des sommes partielles. Théorèmes
de comparaison directe, sommation des relations de comparaisons. Règle de d'Alembert, comparaison
avec une intégrale.

� Espace vectoriel des séries convergentes, des séries absolument convergentes.
� Séries réelles, plan d'étude d'une série réelle. Séries alternées.
� Exemples de séries dans Mn(K), séries géométriques et exponentielles.
� Famille sommables de termes positifs ou nuls. Lien avec les séries à termes positifs ou nuls, théorème de

sommation par paquets, théorème de Fubini Tonelli.
� Famille sommables de réels ou complexes. Lien avec les séries, théorème de sommation par paquets,

théorème de Fubini-Lebesgues, théorème de sommation par paquets, application au produit de Cauchy
de deux séries.

� Dé�nition d'une probabilité sur un univers Ω dénombrable, caractérisation d'une probabilité par ses
valeurs sur les événements élémentaires, variable aléatoire sur Ω, espérance d'une variable aléatoire,
exemple la loi de Poisson.

� A venir : Fonctions vectorielles, Calcul di�érentiel.
Avertissement pour les colleurs : les familles sommables �gurent au programme pour fonder

rigoureusement les probabilités, elles ne doivent pas faire l'objets d'exercices autres qu'élémentaires. Les
élèves ne sont pas sensés connaitre autre chose en probabilités que le cours de MPSI (Ω �ni) et la
dé�nition donnée cette semaine, il y aura un chapitre entier consacré aux probabilités en �n d'année, les
exercices doivent rester très élémentaires.

Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier,
Virgile Marrec.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

37 Exercices

1. Donner en utilisant le théorème de sommation des équivalents :

� un équivalent de
n∑

k=1

kk ;

� un développement limité en 1
n , à l'ordre 2 de

n∑
k=1

1
k2 .

2. Montrer que
n∑

k=1

1
k ∼

n→+∞
lnn. Montrer que la suite

(
n∑

k=1

1
k − lnn

)
n∈N

est convergente. On note γ sa

limite.

⋆ Donner un équivalent simple, lorsque n tend vers +∞, de
n∑

k=1

1
k − lnn− γ.

3. On Munit de la norme Mn(R)

Mn(R) → R+ ; M 7→
√
Tr(tMM)

on admet que que pour tout A et tout B éléments de Mn(R),

∥AB∥F ≤ ∥A∥F ∥B∥F .

Dé�nir l'exponentielle d'une matrice. Calculer l'exponentielle des matrices

(
1 5
3 3

)
,

(
0 −1
1 0

)
et

(
3 −1
0 3

)
.



4. Séries sans paramètre � Étudiez en utilisant des développements limités au sens fort, les séries de
terme général :

un = (−1)n
(
e−

(
1 + 1

n

)n)
, etc.

5. Séries à paramètre � Etudiez en utilisant des développements limités (au sens faible) la série de

terme général un = sin
(

(−1)n
nα + 1

n5α

)
, où α est un réel strictement positif, etc., etc., etc...

6. (le retour) Montrer que que la relation de récurrence{
u0 = 1,
un+1 = sin(un),

dé�nit bien une suite (un)n∈N, montrer que cette suite converge vers 0.
Donner lorsque n tend vers +∞, un équivalent de un, de la forme cnγ , avec c et γ réels.
Pour tout élément n de N, on pose an := un − cnγ . Donner un équivalent de an, lorsque n tend vers

+∞.
Les élèves doivent savoir justi�er la forme de la suite téléscopique utilisée en illustrant par un dessin

la comparaison à une intégrale.

7. ⋆ Soit (un)n∈N une suite de réels strictement positifs. On note pour tout entier naturel n, Sn sa somme

partielle d'ordre n et l'on suppose que
∑
un diverge. Prouvez que

∑ un
Sα
n

converge si et seulement si

α > 1.

8. ⋆⋆ Etudier la série de terme général un = sin(n!πe).
Abel : couper-réindexer-recoller

9. ⋆ Soit (an)n∈N une suite croissante de réels strictements positifs qui tend vers +∞. Soit (xn)n∈N une

suite de nombres complexes telle que la série
∑ xn

an
converge. Montrer que 1

an

n∑
k=0

xk tend vers 0, lorsque

n tend vers +∞.

Indication : considérer la quantité Rn =
+∞∑
k=n

xn

an
.

10. Soit X une variable aléatoire dé�nie sur Ω (cf. 1.) à valeurs dans N, d'espérance �nie. Montrer que
E(X) =

∑
n≥0

P(X > n). au choix du colleur :

(a) En utilisant une transformation d'Abel.
(b) En utilisant le théorème de Fubini (on fera un joli dessin).

11. Soient (Xn)n∈N∗ une suite de variables aléatoires à valeur dans N, de même loi, dé�nies sur un même
univers dénombrable Ω, et T une variable aléatoire dé�nie sur Ω et à valeurs dans N∗. On suppose
que pour tout n ∈ N∗ on a X1, ..., Xn, T mutuellement indépendantes et que X1 et T admettent des
espérances �nies. On dé�nit alors la variable aléatoire S = X1 +X2 + ...+XT .

Montrer que E(S) = E(T )E(X1).

12. ⋆⋆ Soit (E, ∥ · ∥) un R-espace vectoriel normé.

(a) Montrer qu'un hyperplan H de (E, ∥ · ∥) est soit fermé, soit dense.
(b) Soit H un hyperplan de E Montrer que E \ H est connexe par arcs si et seulement si H n'est pas

fermé.

13. ⋆⋆ Soit (A, ∥·∥) une C-algèbre normée, sur laquelle telle que toute série absolument convergente converge.
On note e l'unité de A et on note pour tout x ∈ A, σ(x) l'ensemble des éléments λ de C tels que (λe−x)
soit non inversible.

(a) Montrer que pour tout réel x, l'ensemble σ(x) est un compact.
On admet pour tout x ∈ A, la non vacuité de σ(x).

(b) On suppose que tout élément non nul de A est inversible. Déterminer A à isomorphisme près.
(c) Dans le cas où A = Mn(C), comparer pour M et N éléments de Mn(C), les quantités σ(MN) et

σ(NM)

(d) Soient x et y des éléments de A et λ ∈ C non nul.
Montrer que λ ∈ σ(xy) si et seulement si λ ∈ σ(yx).

(e) On suppose que 0 est élément de σ(xy). A-t-on 0 ∈ σ(yx) ?
(Envisager le cas où A est de dimension �nie.)
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38 Fonction d'une variable réelle à valeurs vectorielles

� Dérivation d'applications à valeurs vectorielles.
� Dérivée d'une fonction à valeurs dans un e.v. de dimension �nie F, propriétés de la dérivation.
� Arcs paramétrés : dé�nition, points réguliers, tangentes en un point régulier (aucune autre connais-

sance spéci�que).
� Dérivées d'ordres supérieurs, espace vectoriel Ck(I,F), algèbre Ck(I,C), formule de Leibni(t)z. Dans le

cas d'une application numérique, généralisation à une application bilinéaire, formule de Taylor-Young
vectoriel à l'ordre n pour une application de classe Cn (avec un petit o).

� Intégrale l'intégrale a été provisoirement introduite par l'intégrale des composantes dans une base, une
construction intrinsèque sera donnée dans un prochain chapitre
� Propriétés de l'intégrale.
� Inégalité des accroissements �nis pour une application de classe C1 à valeurs dans F.
� Formule de Taylor avec reste intégrale (vectorielle), inégalité de Taylor-Lagrange, formule de Taylor-

Young à l'ordre n pour une application de classe Cn+1 (avec un grand O).

39 Calcul di�érentiel

Il s'agit du début du cours, le programme s'arrête avant la di�érentiation d'applications com-
posées.

Toutes les applications sont dé�nies sur un ouvert U d'unR-espace vectoriel E, de dimension �nie p à valeurs
dans un R-espace vectoriel F, de dimension �nie n. E sera le plus souvent vu comme un espace a�ne.

� Dérivées directionnelles, dérivées partielles dans une base. Une application f⃗ ayant dans une base p
applications dérivées partielles dé�nies et continues sur U véri�e, pour tout point a de U :

f⃗
(
a+ h⃗

)
= f⃗ (a) +

p∑
i=1

hi.Dif⃗ (a) + o
(
∥h⃗∥
)
,
(
h⃗→ 0⃗E

)
(4)

� Une application ayant dans une base p applications dérivées partielles dé�nies et continues sur U , admet
des dérivée dans toutes les directions continues, et des dérivées partielles dans toute base continues : on
dit qu'elle est de classe C1

� Notion d'applications di�érentiables. Une application di�érentiable admet des dérivées directionnelles
selon tout vecteur, en tout point de U . Expression de la di�érentielle au moyen des dérivées partielles
dans une base. Interprétation géométrique dans le cas où E est R2 (plan tangent).

� Une application est de classe C1 si et seulement si elle est di�érentiable et sa di�érentielle est continue.
� À venir Composition d'applications di�érentiables, matrice jacobienne, dérivation d'ordre supérieur.
Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,

Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier,
Virgile Marrec.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.

40 Questions de cours

1. Formule de Taylor reste intégral (pour une fonction vectorielle), on donnera deux expression du reste.
On évitera la récurrence et privéligiera le détail des premières étapes.

2. Di�érentielle d'une forme linéaire, d'une application bilinéaire.

3. ⋆⋆ Soit f⃗ une application d'un ouvert U d'un R-espace vectoriel E, de dimension �nie p à valeurs dans
un R-espace vectoriel F, de dimension �nie n. On suppose qu'il existe une base B de E dans laquelle f⃗



admet p applications dérivées partielles dans B continue. Montrer que pour tout a ∈ U :

f⃗(a+ h⃗) = f⃗(a) +

p∑
i=1

hi∂if⃗(a) + o⃗(∥h⃗∥) ; (⃗h→ 0⃗E).

4. Sous les hypothèses de la question précédente montrer l'équivalence des deux propositions :
i. L'application f⃗ admet sur U des applications dérivées directionnelles dans toutes les directions conti-
nues.

ii. Il existe une base B de E dans laquelle f⃗ admet p applications dérivées partielles continues.

41 Récitation d'exercices

42 Exercices

1. ⋆⋆ formule sommatoire d'Euler-MacLaurin�

(a) Montrer que la relation de récurrence suivante suivante dé�ni bien une suite (Pn)n∈N de polynômes
à coe�cients rationnels : P0 = 1, ∀n ∈ N∗, P ′n = nPn−1,

∫ 1

0
Pn(t)dt = 0. On véri�era qu'en posant

pour tout n ∈ N, Bn := Pn(0), Pn =
n∑

k=0

(
n
k

)
Bn−kX

k

(b) En comparant Pn et Pn(1−X) montrer que pour tout k ∈ N∗ on a B2k+1 = 0.
(c) Soit p ∈ N. Établir pour f ∈ C2p+1([0, 1],R), le formule∫ 1

0

f(x)dx =
f(1) + f(0)

2
−

p∑
k=1

B2k

(2k)!
(f (2k−1)(1)− f (2k−1)(0))−Rp,

où Rp = 1
(2p+1)!

∫ 1

0
f (2p+1)(x)P2p+1(x)dx.

2. Soit f une application d'un segment [a, b] dans C, continue. Donner une condition nécessaire et su�sante
pour que

∫
[a,b]

|f | = |
∫
[a,b]

f |. Ou bien cas d'égalité dans l'inégalité triangulaire pour n complexes.

⋆ En plus :soit f⃗ une application de [a, b] un espace euclidien E, continue. Donner une condition
nécessaire et su�sante pour que

∫
[a,b]

∥f⃗∥ = ∥
∫
[a,b]

f⃗∥, où ∥ · ∥ est la norme euclidienne.

3. (a) Soient U un ouvert non vide de R2 et f une application de U dans R à valeurs positives ou nulles,
de classe C1. On suppose qu'il existe un réek k > 0 tel que pour tout m ∈ U :

∥∇⃗f(m)∥ ≤ kf(m). (5)

Soient [a, b] un segment non réduit à un point et γ : [a, b] → R2 un arc paramétré de classe C1

tel que γ([a, b]) ⊂ U . En�n, on pose m0 = γ(a) et m1 = γ(b).
Montrer que l'application f ◦ γ, notée g, est de classe C1 et montrer que pour tout élément t de

[a, b],
g′(t) ≤ k∥−→γ ′(t)∥g(t).

En déduire que
f(m1) ≤ f(m0)e

kℓ,

où ℓ désigne la longueur de l'arc γ.
(b) On suppose que U est l'ensemble {(x, y) ∈ R2|1 < ∥(x, y)∥ < 2}. Montrer que si f s'annule en un

point a de U alors f est nulle.
(c) ⋆⋆ Reprendre la question précédente avec pour U un connexe par arcs.

4. On munira R2 de sa structure euclidienne canonique, par ⟨·|·⟩ on désignera le produit scalaire canonique,
par ∥ · ∥ la norme associée. Soient ε un élément de {−1, 1}, A un point de R2 et F une application d'un
intervalle I, ouvert et non vide, dans R2 \ {A} de classe C2, telle que pour tout réel t,

F⃗′′(t) = ε

−→
AF(t)

∥
−→
AF(t)∥2

.

(a) Soit l'application σ : I → R ; t 7→ detBc

(−→
AF(t),

−→
F ′(t)

)
. Montrer que σ est constante.



(b) Dans cette question on suppose que ε = 1. Soient a et b des éléments distincts de I tels que
F(a) = F(b). En considérant

1

2

∫ b

a

∥F⃗′(t)∥2dt,

montrer que F⃗′(a) ̸= F⃗′(b). Interpréter.
(c) Dans cette question on suppose que ε = −1. Soit R ∈ R∗+. Déterminer une valeur de F telle que le

support de l'arc paramétré (I,F) soit un cercle de rayon R.

5. Étudier la continuité en (0, 0) de f : R2 → R ; (x, y) 7→

{
x4+3xy2−5y3

x2+y2 , pour (x, y) ̸= (0, 0),

0, pour (x, y) = (0, 0).
de

g : R+ ×R+ → R ; (x, y) 7→

{
x2−3xy2

x+y , pour (x, y) ̸= (0, 0),

0, pour (x, y) = (0, 0).
.

Soit l'application f : R×R → R ; (x, y) 7→

{
xy2

x2+y4 , pour (x, y) ̸= (0, 0),

0, pour (x, y) = (0, 0).
Montrer que f admet

en (0, 0) dans toute direction une dérivée directionnelle. Est-elle continue en ce point ?

6. Soit δ : Mn(R) → Mn(R) ;M 7→ det(M). Montrer que δ est de classe C∞. Donner sa di�érentielle, au
moyen du produit scalaire canonique sur Mn(R) :
� en calculant les dérivées partielles ;
� ⋆ en utilisant la densité de GLn(R).

7. ⋆ Soit f une application de Rn dans R avec n ≥ 1. On suppose f homogène de degré 1, c'est à dire que
pour tout réel t strictement positif et tout X ∈ Rn, f(tX) = tf(X). Montrer que f est di�érentiable en
l'origine si et seulement si f est linéaire. Qu'en conclut-on pour une norme.

8. Soit l'arc paramétré (R, F ) de R2, muni de sa structure euclidienne canonique,

{
x = 2t3,
y = 3t2,

t ∈ R.

(a) Déterminer l'ensemble D des réels t tels que le point de paramètre t de l'arc soit régulier et pour un
élément t0 de D une équation cartésienne de la tangente T et de la normale au point de paramètre t0

(b) Montrer que pour tout t ∈ D il existe un et un seul élément t′ de D tel que les tangentes à l'arc aux
points de paramètres t et t′ soient orthogonale.

(c) Montrer qu'il existe deux et seulement deux éléments de D, t1 et t2 tels que les tangentes aux points
de paramètres t1 et t2 soient aussi des normales à la courbe.

9. ⋆⋆ Soit l'arc paramétré (R, F ) de R3 où, pour tout t ∈ R, F (t) =
(

2t
1+t4 ,

t3

1+t4
1−4t4
1+t4

)
.

(a) Montrer que F est injective.
(b) Soient quatre réels deux à deux distincts t1; t2, t3, et t4. Donner une condition nécessaire et su�sante

pour que les points F (t1), F (t2), F (t3) et F (t4) soient coplanaires.
(c) Soient trois réels t1; t2, t3 . À quelle condition les points F (t− 1), F (t) et F (t3) sont ils alignés ?

10. ⋆⋆

(a) Soient un réel α > 2 et (zn)n∈N une suite de complexes non nuls tels que pour tout couple d'entiers
naturels distincts,

|zp − zq| > 1.

(b) Montrer la série
∑

1
|zn|α converge.

Indication. Considérer pour tout N ∈ N, CN =
{
z ∈ C | |Re(z)| ≤ N√

2
, |Im(z)| ≤ N√

2

}
.

(c) Construire une suite de complexes (zn)n∈N telle que la série
∑

1
|zn|2 diverge et qui véri�e

|zp − zq| ≥ 1,

pour tout couple (p, q) d'éléments distincts de N.



Indication pour la question 6, second point et 7.
6.(b)

• Remarquons qu'a priori l'application δ est de classe C1. En e�et les n2 applications

Mn(R) → R ; M 7→ mi,j ; (i, j) ∈ [[1, n],]

sont de classe C1 car linéaires. Donc δ est de classe C1 comme sommes et di�érences de produits de ces appli-
cations.

• Ceci étant, soit G ∈ Mn(R).
Prenons U un élément non nul de Mn(R).
Alors, pour tout t élément de R∗,

δ(G+ tU) = det(G) det(In + tG−1U) = tn det(G)

(
1

t
In +G−1U

)
= tn det(G)χ−G−1U

(
1

t

)
= tn det(G)

((
1

t

)n

− tr(−G−1U)

(
1

t

)n−1

+ o
t→0

(
1

tn−1

))
= det(G) + tdet(G)tr(G−1U) + o

t→0
(t)

= det(G) + t tr((com(G))⊤U) + o
t→0

(t) .

D'où l'existence de DUδ(G), que nous donnait déjà le caractère C1 de δ, et

DUδ(G) = tr
(
(com(G))⊤U

)
= ⟨com(G)|U⟩,

où ⟨·|·⟩ désigne le produit scalaire canonique sur Mn(R) (identi�é à R(n2).

• Soit à présent M ∈ Mn(R). On dispose d'une suite (Gp)p∈N d'éléments de GLn(R) qui converge vers M
(par exemple une suite extraite de

(
M − 1

2p In
)
p∈N par suppression des termes d'indices p, tels que 1

2p soit dans
le spectre de M .)

Le caractère C1 de δ assure la continuité de DUδ et donc que :

DUδ(Gp) →
p→+∞

DUδ(M).

La continuité de = ⟨·|U⟩ (linéaire en dimension �nie) et deM 7→ com(M) (polynomiale en les coordonnées dans
la base canonique) veulent que :

⟨com(Gp)|U⟩ →
p→+∞

⟨com(M)|U⟩.

Par ces deux points,
DUδ(M) = tr((com(M))⊤U) = ⟨com(M)|U⟩.

Donc pour tout A ∈ Mn(R),

dδ(A) : Mn(R) → R ; H 7→ ⟨com(A)|H⟩.

7) Observons pour commencer que f(0Rn
) = f(2 · 0Rn

) = 2f(0Rn
) de sorte que f(0Rn

) = 0.
Ceci étant supposons f di�érentiable, on a donc, pour tout réel t > 0,

tf(X) = f(tX) = f(0Rn
) + df(0Rn

) · (tX) + ∥tX∥ε(tX) = t (df(0Rn
) · (X) + ∥X∥ε(tX)) ,

où ε est une application de Rn dans R de limite nulle en 0Rn . Donc, par divison par t dans la précédente éfalité
puis en laissant tendre t vers 0,

f(X) = df(0Rn
) · (X).

Donc f est l'application linéaire df(0Rn
).

Toute norme est 1-homogène, cependant aucune ne peut prétendre à la linéarité puisque un vecteur non nul
(il en est n ̸= 0) et son opposé partageant la même norme non nulle.

Aucune norme sur Rn n'est di�érentiable en l'origine. Il en est du reste de même sur tout espace vectoriel
de dimension �nie non nulle.
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43 Calcul di�érentiel

Toutes les applications sont dé�nies sur un ouvert U d'unR-espace vectoriel E, de dimension �nie p à valeurs
dans un R-espace vectoriel F, de dimension �nie n. E sera le plus souvent vu comme un espace a�ne.

� Dérivées directionnelles, dérivées partielles dans une base. Une application f⃗ ayant dans une base p
applications dérivées partielles dé�nies et continues sur U véri�e, pour tout point a de U :

f⃗
(
a+ h⃗

)
= f⃗ (a) +

p∑
i=1

hi.Dif⃗ (a) + o
(
∥h⃗∥
)
,
(
h⃗→ 0⃗E

)
(6)

� Une application ayant dans une base p applications dérivées partielles dé�nies et continues sur U , admet
des dérivée dans toutes les directions continues, et des dérivées partielles dans toute base continues : on
dit qu'elle est de classe C1

� Notion d'applications di�érentiables. Une application di�érentiable admet des dérivées directionnelles
selon tout vecteur, en tout point de U . Expression de la di�érentielle au moyen des dérivées partielles
dans une base. Interprétation géométrique dans le cas où E est R2 (plan tangent).

� Une application est de classe C1 si et seulement si elle est di�érentiable et sa di�érentielle est continue.
� Di�érentiabilité de la composée. La composée d'applications de classe C1 est de classe C1, di�érentielle

d'une combinaison linéaire d'applications di�érentiables, de B(f, g) où B est bilinéaire et f et g sont
deux applications di�érentiables.

� Matrice jacobienne.
� Applications de classe Ck. Théorèmes de transfert pour les applications de classe Ck.
� Théorème de Schwarz (admis).

La notion de vecteur tangent à un ensemble, et plus généralement la géométrie di�érentielle
feront l'objet de l'avant dernier chapitre.

44 Approximation uniforme, fonction d'une variable réelle

� Convergence simple et uniforme de suites et de séries d'applications d'une partie A d'un e.v. de dimension
�nie à valeurs dans R, C ou un e.v. de dimension �nie F. Critère de convergence uniforme.

� Continuité d'une limite uniforme d'une suite d'applications continues. Résultats analogues pour les séries.
Dans la pratique on montre pour tout point du domaine, la convergence uniforme dans un voisinage relatif
au domaine de ce point.

� Limite en un point (ou en +∞) de la limite uniforme d'une suite d'applications ayant en ce point une
limite. Résultat analogue pour les séries.

� Lien entre la convergence uniforme et la convergence en norme ∥ · ∥∞. Pour A compact
(
C0(A,F), ∥ · ∥∞

)
est une partie fermée de (B(A,F), ∥ · ∥∞).

� Convergence normale des séries d'applications. La convergence normale implique la convergence uniforme
et uniforme absolue. Critère de convergence normale.

� Les deux théorèmes de densité au programme.
� A venir : groupes, anneaux...
Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,

Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Aiden Legal,
Kevynn Boucher, Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier,
Virgile Marrec.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel.



45 Questions de cours

1. Continuité de la limite uniforme d'une suite d'applications continues.
⋆⋆ En remplacement : limite en un point (ou en +∞) de la limite uniforme d'une suite d'applications
ayant en ce point une limite (théorème de la double limite).

2. Toute application continue sur un segment est limite uniforme d'une suite d'applications en escalier.

46 Exercices

1. Donner l'expression du gradient en coordonnées polaires. Ou bien, version ⋆ : donner l'expression de la
divergence en coordonnées polaires

2. On pose U = R2 \ (R− × {0}). Déterminer l'ensemble SU des éléments f de C1 (U,R) tels que, pour
tout élément (x, y) de R2,

−y ∂f
∂x

(x, y, z) + x
∂f

∂y
(x, y, z) = 0, .

On illustrera abondamment par des beaux dessins polychromes. On tracera notamment les
lignes des champs de vecteurs associées à ces équations ainsi que les champs.

3. On munit Rn de sa structure euclidienne canonique et par ∥ · ∥ on désigne le la norme euclidienne
canonique.

i : Rn \ {(0, ..., 0)} → Rn ; x⃗ 7→ x⃗

∥x⃗∥2
.

Montrer que i est de classe C1, et que la di�érentielle de i, en tout point m de Rn distinct de (0, ..., 0),
est la composée d'une homothétie et d'une symétrie.

4. Montrer la convergence simple de la série d'applications
∑
un, où, pour tout entier naturel n,

un : [−1, 1[ → R; x 7→
∣∣sin (π2x)∣∣n xn

(n+ 1)
1
4

.

La somme de cette série est-elle continue ?

5. ⋆ Soit la série d'applications
∑
un, où pour tout entier naturel n,

un : R+ → R; x 7→ |sinx|
(n+ 1)

a , pour x ∈ [nπ, (n+ 1)π] , 0 sinon.

et a un réel positif. Etudier la convergence simple, uniforme et normale. Discutez suivant la valeur de a.
On illustrera de beaux dessins.

6. Soit la fonction f de la variable réelle x dé�nie par f(x) =
+∞∑
n=1

1
nx . Montrer que le domain de dé�nition

de f est ]1,+∞[.Étudier la continuité de f sur son domaine de dé�nition. Montrer que f admet une
limite �nie à déterminer en +∞ et en 1, puis donner un équivalent de f en 1+.

7. ⋆ Soit la fonction f du couple (x, y) de variables réelles, dé�nie par f(x) =
+∞∑
n=2

1
nx(ln(n))y . Étudier le

domaine de dé�nition D de f . Étudier la continuité de f sur D. On fera de belles �gures.

8. Pour tour entier n ≥ 2 on pose , fn : R → R ; x 7→ xe−nx

lnn .

(a) Déterminer le domaine D de convergence de la série
∑
n≥2

fn. On note φ : D → R ; x 7→
+∞∑
n=2

fn(x).

(b) Montrer que φ est continue sur ]0,+∞[.
(c) La série

∑
n≥2

fn converge-t-elle normalement sur son domaine de dé�nition ?

(d) Étudier la continuité de φ en 0.

9. (a) Donner deux exemples de normes matricielles sur Mn(R). Dé�nir l'exponentielle d'un élément M de
Mn(R).

(b) Montrer que l'application Mn(R) → Mn(R) ; M 7→ exp(M) est continue.
(c) On admet que pour tout couple (A,B) d'éléments de Mn(R) qui commutent entre eux, exp(A +

B) = exp(A) exp(B). Montrer que l'exponentielle d'un élément M de Mn(R) qui commute avec sa
transposée est le produit d'une matrice symétrique et d'une matrice orthogonale.

Les formules du type ℓ(exp(M)) = exp(ℓ(M)) où ℓ est linéaire doivent être justi�ée par
passage aux sommes partielles et continuité de ℓ.



10. Théorème des moments � Soit f une application de [0, 1] à valeurs complexes continue. On suppose que
pour tout entier naturel n,

∫ 1

0
tnf(t)dt = 0. Montrer que f est nulle.

11. ⋆ Soit une suite (fn)n∈N d'applications de [0, 1] dans R continues, qui converge simplement vers une
application f , supposée, elle aussi, continue.

Supposons qu'il existe K, réel, tels que pour tous éléments x et y de [0, 1] et tout entier naturel n :
|fn(x)− fn(y)| ≤ K|x− y|. (suite est équilipschitzienne). Montrer que (fn)n∈N, converge uniformément
vers f .

Version⋆⋆ Théorèmes de Dini �

(a) Supposons que la suite (fn)n∈N soit monotone (c'est-à-dire que la suite réelle (fn(x))n∈N est soit
croissante pour tout élément x de [0, 1], soit décroissante pour tout élément x de [0, 1]).

Montrer que (fn)n∈N, converge uniformément vers f .
(b) Supposons que pour tout entier naturel n, l'application fn soit décroissante. Montrer que (fn)n∈N,

converge uniformément vers f .

12. ⋆ Soit une suite (pn)n∈N d'éléments de R[X]d qui converge simplement vers une aplication f . Montrer
que f est élément de R[X]d et que (pn)n∈N converge uniformément vers f sur tout segment.

13. Que dire d'une application f de R dans R, limite uniforme d'une suite d'applications polynômiales.
Montrer que toute application de R dans R continue est limite simple d'une suite d'applications poly-
nomiales.

14. ⋆ ⋆ Théorème de Sard, version faible �
Soit n un entier naturel non nul. Rn est muni de sa structure eucidienne canonique, ∥ · ∥ désigne la

norme euclidienne. On notera de même la norme fonctionnelle sur E∗ subordonnée à la norme euclidienne.
On dit qu'une partie F de Rn est négligeable, si pour tout réel strictement positif ε il existe une suite

de pavés 6 fermés (Cp)p∈N telle que : F ⊂
+∞⋃
p=0

Cp et pour tout p ∈ N,
p∑

k=0

|Ck| < ε.

Soit f une application d'un ouvert U de Rn à valeurs dans Rn de classe C1. On note C l'ensemble
des points critiques x de f : C = {x ∈ U |rg(df(x)) < n}.

Soit K un cube de Rn de côté de longueur r > 0. On pose M := sup
x∈K

∥df(x)∥ et pour δ ∈ R∗+,

λ(δ) = sup
(x,y)∈K2 ∥x−y∥<δ

∥df(x)− df(y)∥.

(a) Montrer que λ(δ) → 0, lorsque δ tend vers 0 par valeurs supérieures.
(b) Soit x ∈ K ∩ C et soit Hx un hyperplan de Rn passant par f(x) et dont la direction contient

Im(df(x)). Montrer que d(f(y), Hx), distance de f(y) à Hx véri�e :

d(f(y), Hx) ≤ λ(∥x− y∥)∥x− y∥.

(c) Montrer que l'ensemble f(C) des valeurs critiques de f est négligeable. On pourra découper K en kn

cubes tous de côté r
k

Matrice jacobienne

15. (a) On admet que l'application R∗+×] − π, π[→ R2 \ {(x, 0), x ∈ R−} ; (r, θ) 7→ (r cos θ, r sin θ) est une
bijection de classe C1 dont la bijection réciproque ϕ est C1. Déterminer, sans calculer ϕ, Jϕ, en un
point (x, y) de R2 \ {(x, 0), x ∈ R−}.

(b) ⋆ Expliciter ϕ et véri�er pour un ou deux coe�cients de Jϕ le résultat trouvé.

16. ⋆ Soit f une application de Rn dans Rp de classe C1.

(a) Soit a un élément Rn. On pose r = rang(df(a)) . Montrer qu'il existe un voisinage V de a tel que
pour tout x ∈ V , r ≤ rang(df(x).

(b) ⋆ ⋆ Montrer qu'il existe un ouvert U dense dans Rn tel que rang(df) soit localement constant sur U .

6. Un pavé fermé est un ensemble d'équation dans une base orthonormée ai ≤ xi ≤ bi, i = 1, ..., n.



Solutions d'execices de colles
Soit une suite (fn)n∈N d'applications de [0, 1] dansR continues, qui converge simplement vers une application

f , supposée, elle aussi, continue.
Supposons qu'il existe K, réel, tels que pour tous éléments x et y de [0, 1] et tout entier naturel n : |fn(x)−

fn(y)| ≤ K|x− y|. (suite est équilipschitzienne). Montrer que (fn)n∈N, converge uniformément vers f .
Solution.
Soit ε ∈ R∗+.
Choisissons une subdivision (a0, a1, ..., ap) de [0, 1] dont le pas est inférieur à ε

K (le réel K est nécessairement
positif et, quitte à l'augmenter il est loisible de le supposer strictement positif). La convergence simple de
(fn)n∈N fournit un entier naturel ni, pour i = 0, 1, 2, ..., p tel que :

∀n ∈ [[ni,+∞[[, |fn(xi)− f(xi)| ≤ ε. ;

Désignons dans la suite par N le plus grand des ni.
Soit n ∈ [[N,+∞[[. Soit x ∈ [0, 1].
Si x = 1, alors par dé�nition de de np et de N , |fn(x)− f(x)| ≤ ε.
Supposons à présent x ∈ [0, 1[. Désignons par j l'élément de {0, 1, ..., p− 1} tel que x ∈ [xj , xj+1[, alors

|f(x)− fn(x)| ≤|f(x)− f(xj)|+ |f(xj)− fn(xj)|+ |fn(xj)− fn(x)| ≤

K|x− xj |+ ε+K|x− xj | ≤ 2K|xj+1 − xj |+ ε ≤ 2K
ε

K
+ ε = 3ε.

(7)

Donc (fn)n∈N, converge uniformément vers f .
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47 Fonction d'une variable réelle, approximation uniforme

Voir programme précédent.

48 Révision de sup. sur les équations di�érentielles.

� Équation di�érentielle linéaire du premier ordre à coe�cients continus, structure de l'ensemble des solu-
tions, unicité de la solution d'un problème de Cauchy sur un intervalle donné, méthode d'abaissement
du degré (application de la méthode à des équation non linéaire ou des inéquations linéaire, cf. 1 et 2.).

� Équation di�érentielle linéaire d'ordre deux à coe�cients constants, cas des second membres de la forme
p exp(λ·), où l'application p est polynomiale.

� Intégrale sur un segment de la limite uniforme d'une suite d'applications.
Les questions de cours ou exercices avec un astérisque ⋆ pour : C. Brévignon, Malo Le Grognec,

Augustin Ravasse, Lucas Pan, Anaël Pelé, Arthur Quendo, Noémie Manach, Martin Pina-Silas, Kevynn Boucher,
Thomas Jézequel Ilies Le Marc Brieg Ollivier, Vincent Nouaille -Degorce, Pauline Wadier, Virgile Marrec.

Les questions de cours ou exercices avec deux astérisques ⋆⋆ pour : C. Brévignon, Malo Le Grognec,
Augustin Ravasse, Martin Pina-Silas, Lucas Pan, Thomas Jézequel, Arthur Quendo.

49 Question de cours

Énoncez le théorème de la double limite dans le cas des suites de fonctions puis des séries et prouver le
théorême de continuité d'une limite uniforme de fonctions continues.

50 Exercices

1. (a) Soit B la boule ouverte de Rn de centre (0, 0, ...0) et de rayon strictement positif R. Soit f une
fonction continue sur B̄ à valeurs réelles et dont la restriction à B est de classe C2. Montrer que si f
admet en un point m de B un maximum local, alors ∆f(m) ≤ 0.

(b) ⋆ On suppose f harmonique (i.e. ∆f nul). Montrer que

sup
x∈B̄

f(x) = sup
x∈Fr(B)

f(x).

On pourra considérer fε : x 7→ f(x) + ε∥x∥2, pour ε ∈ R∗+ ;

2. Déterminer l'ensemble S (rep. S′) des éléments f de C1
(
R3,R

)
tels que, pour tout élément (x, y) de

R2,
∂f

∂x
(x, y, z) +

∂f

∂y
(x, y, z) +

∂f

∂z
(x, y, z) = 0 (resp. x).

3. ⋆ Déterminer l'ensemble S (rep. S′) des éléments f de C1
(
R2,R

)
tels que, pour tout élément (x, y) de

R2,

y
∂f

∂x
(x, y) +

∂f

∂y
(x, y) = 0 ( resp. f).

On illustrera abondamment par des beaux dessins polychromes. On tracera notamment les
lignes du champ de vecteurs associées à cette équation ainsi que le champ.

Montrer que ϕ est bornée.

4. � petit lemme de Gronwall �
Soient t0 un réel, u1 un reél strictement positif et f une application de [t0,+∞[ continue. Soient ϕ1 la

solution du problème de Cauchy :

{
dy
dt = f(t)y,
y(t0) = u1.

et ϕ une application de[t0,+∞[ dérivable telle que

pour tout t ∈ [t0,+∞[, ϕ′(t) ≤ f(t)ϕ(t) et ϕ(t0) ≤ u1. Montrer que pour tout t ∈ [t0,+∞[, ϕ(t) ≤ ϕ1(t).



5. ⋆ Soient t0 un réel, T un réel strictement positif et u et v des applications continues de [t0, t0 + T ] dans
R+. On suppose qu'il existe un réel C ≥ 0 tel que pour tout t ∈ [t0, t0 + T ],

u(t) ≤ C +

∫ t

t0

uv.

Montrer que pour tout t ∈ [t0, t0 + T ],

u(t) ≤ C exp

(∫ t

t0

v(s)ds

)
.

6. (a) Soit a un réel, et b une application de R+ dans R continue et bornée.
Soit l'équation di�érentielle :

dy

dt
= ay + b(t).

On suppose que a est positif strictement. Montrer qu'il existe une et une seule solution de cette
équation sur R+ qui soit bornée. Que dire si a est négatif ?

(b) ⋆ On suppose a ≥ et (bn)n∈N est une suite de réels bornée. On note S l'ensemble des suite u telle
que :

∀n ∈ N, un+1 = aun + bn.

Montrer que S possède un et un seul élément borné.

7. Déterminer l'ensemble E des applications f de R dans R continues telles que pour tout réel x,

2 x f (x) = 3

∫ x

0

f (t) d t.

8. ⋆ Soit
∑
un une série d'applications de [0, 1[ dans R à valeurs positives ou nulles. qui converge

simplement. On note f sa somme. On suppose que pour tout entier n ≥ 0 l'application un admet une
limite ℓn en 1 et que

∑
ℓn diverge. Montrer que f(x) tend vers +∞ lorsque x tend vers 1.

9. ⋆ On pose pour tout n ∈ N∗, et tout x ∈ R,

un(x) = (−1)n sin(sin(....(sin(x))...))︸ ︷︷ ︸
n fois

(a) Montrer que
∑
n≥1

un converge simplement.

(b) Montrer que pour tout entier n ≥ 2, ∥un∥∞ = |un−1(1)|.
(c) Déterminer un équivalent de ∥un∥∞.
(d) Montrer que

∑
n≥1

un ne converge pas normalement.

(e) Montrer que
∑
n≥1

un converge uniformement.

10. Soit la fonction f de la variable réelle x donnée par :

f(x) =

+∞∑
n=1

ln

(
1 +

1

n2x2

)
.

(a) Déterminer le domaine de dé�nition D de f .
(b) Etudier la continuité de f sur D.
(c) Donner un équivalent de f(x) aux bornes D.

11. ⋆⋆
Pour tout entier n ≥ 1 on dé�nit : Pn : R → R, x 7→ an(1− x2)n, où an = 1∫ 1

−1
(1−x2)ndx

.

Soit E l'espace vectoriel des applications continues sur [0, 1] à valeurs réelles ou complexes. On le
munit de la norme ∥.∥∞.

Soit F l'espace des fonctions continues sur R, 2π-périodiques, à valeurs complexes. On le munit de la
norme ∥.∥∞

Pour tout entier naturel n, on note Tn = Vect(exp(k ·), k ∈ [[−n, n]])

Soit φn la fonction dé�nie sur R par : φn(t) = an

(
cos

t

2

)2n

, le réel an étant tel que
∫ π

−π
φn(t) dt = 1.



(a) Soit δ un réel tel que 0 < δ < π ; montrer : lim
n→+∞

sup
δ≤t≤π

φn(t) = 0.

Soit g un élément de F. Pour tout entier n ≥ 0, on note Qn la fonction dé�nie sur R par la
relation :

∀u ∈ R, Qn(u) =

∫ π

−π
φn(t)g(u− t) dt.

(b) Montrer Qn appartient à Tn pour tout n ∈ N.
(c) Montrer que lim

n→+∞
∥g −Qn∥∞ = 0.

(d) On suppose que g est une fonction paire ; montrer que Qn est une fonction paire et en déduire qu'il
existe un polynôme Pn tel que Qn(u) = Pn(cosu). En déduire le théorème de Weierstrass.

12. ⋆
On considère f une application de [0, 1] dans R continue. Pour tout entier n ≥ 1 on considère le

polynôme :

Bn(f) =

n∑
k=0

(
n
k

)
f

(
k

n

)
Xk(1−X)n−k,

ne polynôme de Bernstein associé à f .
Soit (Xn)n∈N∗ une suite de variables aléatoires de Bernoulli mutuellement indépendantes, toutes de

même paramètre x, élément de [0, 1]. Notons pour tout entier n ≥ 1, Sn = X1 +X2 + · · ·+Xn.

(a) Montrer que pour tout entier n ≥ 1,

|f(x)−Bn(f)(x)| ≤ E

(∣∣∣∣f(x)− f

(
Sn

n

)∣∣∣∣) .
(b) Pour tout réel h > 0, on pose :

ω(h) = sup{|f(x)− f(y)|, (x1, x2) ∈ [0, 1]2 et |x1 − x2| ≤ h} ; Ah =

{∣∣∣∣Sn

n
− x

∣∣∣∣ ≤ h

}
.

Montrer que pour tout entier n ≥ 1 et tout réel h > 0,

|f(x)−Bn(f)(x)| ≤ 2P(Āh)∥f∥∞ +P(Ah)ω(h)

En déduire que (Bn(f))n∈N converge uniformément vers f sur [0, 1]

13. ⋆⋆ Chudnowski �
Soient le polynôme à coe�cients entiers, p = 2X(1 − X), la suite (pn)n∈N, où p0 = p et pour tout

entier n ≥ 1,
pn = p ◦ p ◦ ... ◦ p︸ ︷︷ ︸

n termes

.

Soit [a, b] un segment inclus dans ]0,1[.

(a) Montrer que pour tout x ∈ [a, b], (pn(x))n∈N converge vers uniformément vers l'application constam-
ment égale 1

2 . sur [a, b].
(b) On désigne par P ([a, b]) l'ensemble des fonctions polunomiales de [a, b] dans R à coe�cients entiers.

Montrer que P ([a, b]) est une partie dense de l'espace vectoriel normée (C0([a, b],R), ∥·∥∞) (théorème
de Chudnovsky).

(c) Montrer que P ([0, 1]), ensemble des fonctions polynomiales de [0, 1] dans R à coe�cients entiers n'est
pas une partie dense de (C0([0, 1],R), ∥ · ∥∞).


