Ce devoir est constitué de deux exercices et d'un problème (deux parties d'un devoir du concours Mines-Ponts). Un exercice facultatif a été ajouté pour les plus téméraire

EXERCICE I

Pour tout entier naturel n non nul, on pose $I_n := \int_0^1 \frac{x^n}{1+x^2} dx$.

- 1. Calculer I_2 et I_3 .
- 2. Donner la limite de la suite $(I_n)_{n \in \mathbb{N}}$.
- 3. Donner un développement limité à l'ordre 2, en $\frac{1}{n}$ de I_n , lorsque n tend vers $+\infty$ (c'est-à-dire une expression de la forme $I_n = a_0 + a_1 \frac{1}{n} + a_2 \frac{1}{n^2} + \mathrm{o}\left(\frac{1}{n^2}\right)$ $(n \to \infty)$).
- 4. Exprimer pour tout entier naturel n, I_n comme la somme d'une série numérique.

EXERCICE II

Lemme de Lebesgue

Soit $T \in \mathbf{R}_{+}^{*}$.

Soit h une application continue de **R** dans **R**, T-périodique. On pose : $\langle h \rangle = \frac{1}{T} \int_0^T h(t) dt$.

1. Montrer que pour tout réel x et tout entier n,

$$\frac{1}{nT} \int_{x}^{x+nT} h(t) dt = \langle h \rangle.$$

2. Soit f une application de classe \mathcal{C}^1 sur un segment [a,b] non réduit à un point. Montrer que

$$\int_{a}^{b} f(t) \sin(nt) dt \underset{n \to +\infty}{\longrightarrow} 0.$$

3. Montrer que

$$\int_{a}^{b} f(t)h(nt)dt \underset{n \to +\infty}{\longrightarrow} \langle h \rangle \int_{a}^{b} f(t)dt.$$

EXERCICE FACULTATIF

Théorème du relévement

Soit \mathcal{U} le cercle unité de \mathbb{C} . On consid $\tilde{A}V$ sre \mathcal{C} l'ensemble des applications de U dans \mathbb{C}^* de classe \mathcal{C}^1 (c'est-à-dire que $t \mapsto f(e^{it})$ est \mathcal{C}^1).

- 1. Soit $f \in \mathcal{C}$. Montrer qu'il existe une application θ de \mathbf{R} dans \mathbf{C} de classe \mathcal{C}^1 , telle que pour tout réel t, $f(e^{it}) = e^{\theta(t)}$. Un telle application s'appelle relévement de f.
- 2. Montrer que deux relévements de f différent d'une constante à préciser.

3. Soit θ un relévement de f et t un réel. Montrer que la quantité

$$\frac{\theta(t+2\pi) - \theta(t)}{i2\pi}$$

est un entier indépendant du choix de θ et de t. On le note $\operatorname{Ind}(f)$ (indice de f).

- 4. Déterminer $\operatorname{Ind}(f)$ dans les cas suivants :
 - (a) f est la fonction associée au monôme X^n .
 - (b) $f = f_1 \times f_2$, où f_1 et f_2 sont des éléments de \mathcal{C} .
 - (c) f est à valeur dans $\mathbf{C} \mathbf{R}_{-}$.
- 5. Soient f_1 et f_2 des éléments de \mathcal{C} tels que $|f_1(t) f_2(t)| < |f_1(t)|$, pour tout réel t. Montrer que $\operatorname{Ind}(f_1) = \operatorname{Ind}(f_2)$
- 6. Montrer que l'application de \mathcal{C} dans \mathbf{R} , Ind est continue.
- 7. Soit f un élément de \mathcal{C} d'indice n. Déterminer le plus grand connexe par arcs contenant f.

PROBLÈME

Inégalité de Prékopa et Leindler

Notations.

On notera \mathbb{R} l'ensemble des nombres réels, \mathbb{R}_+ l'ensemble des nombres réels positifs et \mathbb{R}_+^* l'ensemble des nombres réels strictement positifs. On désignera par \mathbb{N} l'ensemble des entiers naturels et par \mathbb{N}^* l'ensemble des entiers naturels strictement positifs.

Soient \mathcal{A} et \mathcal{B} deux parties non vides de \mathbb{R}^n . Pour tous réels a et b on notera $a\mathcal{A} + b\mathcal{B}$ la partie de \mathbb{R}^n définie par

$$aA + bB = \{ax + by, x \in A, y \in B\}.$$

En particulier, pour a = -1, on écrit $-A = \{-x, x \in A\}$.

Si f désigne une fonction $f: \mathbb{R} \to \mathbb{R}$ bornée sur \mathbb{R} , alors on pose $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$.

Pour tout réel $\lambda > 0$, et tout réel x > 0 on note x^{λ} la quantité $\exp(\lambda \ln(x))$ et l'on convient que $0^{\lambda} = 0$.

Pour toute fonction $f: I \to \mathbb{R}_+$, tous $x \in I$ et $\lambda \in]0,1[$, on écrira $f(x)^{\lambda}$ pour $(f(x))^{\lambda}$.

Partie I. Une inégalité de Prékopa et Leindler

1. Soient λ un réel dans l'intervalle]0,1[, et a et b deux réels positifs. Montrer que

$$\lambda a + (1 - \lambda)b > a^{\lambda}b^{1-\lambda}$$
.

On pourra introduire une certaine fonction auxiliaire dont on justifiera la concavité. Montrer en outre que pour tout réel u > 1,

$$(\lambda a + (1 - \lambda)b)^u \le \lambda a^u + (1 - \lambda)b^u.$$

2. Soient a et b deux réels positifs et λ un réel dans]0,1[. Montrer que

$$(a+b)^{\lambda} \le a^{\lambda} + b^{\lambda}.$$

Dans toute cette partie, λ est un réel appartenant à l'intervalle]0,1[, et f,g,h sont des fonctions de $\mathcal{C}^0(R,\mathbb{R}_+)$ intégrables qui satisfont l'inégalité suivante :

$$\forall x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad h(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} g(y)^{1 - \lambda}.$$

Le but de cette partie est de montrer l'inégalité suivante, à laquelle on fera référence par « inégalité de Prékopa et Leindler », ou en abrégé « P-L » :

$$\int_{-\infty}^{+\infty} h(x) dx \ge \left(\int_{-\infty}^{+\infty} f(x) dx \right)^{\lambda} \left(\int_{-\infty}^{+\infty} g(x) dx \right)^{1-\lambda}. \tag{1}$$

Dans les questions 3, 4 et 5 on supposera de plus que f et g sont strictement positives, c'est-à-dire pour tout réel x, f(x) > 0 et g(x) > 0.

3. On pose $F = \int_{-\infty}^{+\infty} f(x) dx$ et $G = \int_{-\infty}^{+\infty} g(x) dx$. Montrer que pour tout t dans l'intervalle]0,1[, il existe un unique réel noté u(t) et un unique réel noté v(t) tels que

$$\frac{1}{F} \int_{-\infty}^{u(t)} f(x) dx = t, \quad \frac{1}{G} \int_{-\infty}^{v(t)} g(x) dx = t.$$

On pourra étudier les variations de la fonction $u \mapsto \frac{1}{F} \int_{-\infty}^{u} f(x) dx$.

- 4. Montrer que les applications u et v sont de classe C^1 sur l'intervalle]0,1[et, calculer pour chaque $t \in]0,1[$ les nombres dérivés u'(t) et v'(t).
- 5. Montrer que l'ensemble image de l'application w définie sur]0,1[par

$$\forall t \in]0,1[, \quad w(t) = \lambda u(t) + (1-\lambda)v(t)$$

est égal à \mathbb{R} , puis prouver que w définit un changement de variable de]0,1[sur \mathbb{R} . En utilisant ce dernier et $\int_{-\infty}^{+\infty} h(w) dw$, montrer que f, g et h satisfont l'inégalité P-L (1).

On pose $\Psi(u) = \exp(-u^2)$ pour tout réel u.

A partir de maintenant, on suppose que les fonctions f, g et h sont seulement à valeurs positives ou nulles.

6. Prouver que pour tous $x, y \in \mathbb{R}$,

$$\Psi(\lambda x + (1 - \lambda)y) \ge \Psi(x)^{\lambda} \Psi(y)^{1-\lambda}$$
.

Soit M un réel strictement positif. On suppose dans les questions 7, 8 et 9 que f et g sont nulles en dehors de l'intervalle [-M,M]. On pose $\Lambda = \min(\lambda,1-\lambda)$, $\Theta = \max(\lambda,1-\lambda)$ et $\widehat{M} = M \max(\lambda,1-\lambda)$. Pour chaque réel u, on pose :

$$\Psi_M(u) = \begin{cases} \exp\left(-\frac{1}{\Theta^2} \left(|u| - \widehat{M}\right)^2\right), & \text{si } |u| > \widehat{M}, \\ 1, & \text{si } |u| \le \widehat{M}. \end{cases}$$

- 7. Soit $x, y \in \mathbb{R}$. On pose $z = \lambda x + (1 \lambda)y$. Prouver que si $|y| \leq M$, alors $\Psi(x) \leq \Psi_M(z)$. De même, prouver que si $|x| \leq M$ alors $\Psi(y) \leq \Psi_M(z)$.
- 8. Soit $\varepsilon \in]0,1[, f_{\varepsilon} = f + \varepsilon \Psi \text{ et } g_{\varepsilon} = g + \varepsilon \Psi. \text{ Montrer que}$

$$\forall x, y \in \mathbb{R}, \quad f_{\varepsilon}(x)^{\lambda} g_{\varepsilon}(y)^{1-\lambda} \leq h(z) + \varepsilon^{\Lambda} (\|f\|_{\infty}^{\lambda} + \|g\|_{\infty}^{1-\lambda}) (\Psi_{M}(z))^{\Lambda} + \varepsilon \Psi(z),$$

où $z = \lambda x + (1 - \lambda)y$. On commencera par appliquer l'inégalité de la question 2, puis les deux questions précédentes. On rappelle que f(x) = 0 si |x| > M et que g(y) = 0 si |y| > M.

9. En déduire que si f et g sont nulles en dehors d'un intervalle borné alors l'inégalité "P-L" est satisfaite.

Soit $n \in \mathbb{N}$. On désigne par $\chi_n \colon \mathbb{R} \to \mathbb{R}$ la fonction *continue* qui vaut 1 sur [-n, n], qui vaut 0 sur $]-\infty, -n-1] \cup [n+1, +\infty[$ et qui est affine sur chacun des deux intervalles [-n-1, -n] et [n, n+1].

10. Soit $n \in \mathbb{N}^*$. Montrer que :

$$\forall x, y \in \mathbb{R}, \quad \chi_n(x)^{\lambda} \chi_n(y)^{1-\lambda} \le \chi_{n+1}(\lambda x + (1-\lambda)y).$$

11. Montrer que l'inégalité "P-L" (1) est satisfaite (si on choisit d'utiliser le théorème de convergence dominée alors on vérifiera soigneusement que ses conditions de validité sont remplies).

Partie II. Fonctions log-concaves

Soit n un entier strictement positif. On dira qu'une fonction f de \mathbb{R}^n dans \mathbb{R}_+ est log-concave si pour tout λ dans l'intervalle]0,1[

$$\forall x \in \mathbb{R}^n, \quad \forall y \in \mathbb{R}^n, \quad f(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} f(y)^{1 - \lambda}.$$

12. Soit $N \colon \mathbb{R}^n \to \mathbb{R}_+$ une norme sur l'espace vectoriel \mathbb{R}^n . Prouver alors que l'application définie par

$$\forall x \in \mathbb{R}^n, \quad f(x) = \exp\left(-N(x)^2\right)$$

est continue et log-concave sur \mathbb{R}^n . On pourra observer que la fonction $u\mapsto u^2$ est convexe sur \mathbb{R}_+ .