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Modèle SIR pour la propagation d'épidémies et séries de Dirichlet

Notations

Soit J un intervalle de R.

� L'ensemble Ck(J,R) avec k ∈ N∗ désigne l'ensemble des fonctions f : J → R dont les dérivées
jusqu'à l'ordre k existent et telles que f (k) soit continue sur J .

� L'ensemble C∞(J,R) désigne l'ensemble des fonctions indé�niment dérivables sur J .

� Si f : J → R est une fonction bornée, on note

∥f∥∞,J = sup{|f(x)| , x ∈ J}.

Introduction

Dans ce sujet, on étudie l'équation di�érentielle non linéaire

(E) : y′(x) + y(x) + 1 =
1

2
ey(x),

dont l'inconnue est une fonction y : R+ → R. On montrera en partie V que cette équation peut être
utilisée pour caractériser la propagation d'une épidémie non létale au sein d'une population d'individus.

On admet dans tout le sujet que le problème de Cauchy

(C) :

{
y′(x) + y(x) + 1 = 1

2e
y(x)

y(0) = 0
,

admet une unique solution y ∈ C∞(R+,R) que l'on va chercher à approcher de plusieurs manières.

Partie I. Linéarisation de (E)

Pour approcher la solution y du problème de Cauchy (C), on propose dans un premier temps de linéariser
l'équation (E). Comme y est continue et véri�e y(0) = 0, on remarque au voisinage de 0 que

exp(y(x)) ≃ 1 + y(x).

On propose donc d'approcher y par la solution de l'équation di�érentielle linéaire

(Eℓ) : u′(x) + u(x) + 1 =
1

2
(1 + u(x)),

dont l'inconnue est une fonction u : R+ → R. On introduit de même le problème de Cauchy associé

(Cℓ) :

{
u′(x) + u(x) + 1 = 1

2 (1 + u(x))

u(0) = 0
.
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1 ▷ Justi�er qu'il existe une unique solution u au problème de Cauchy (Cℓ), donner son expression et
dresser son tableau de variations.

2 ▷ Montrer qu'il existe une unique solution constante de l'équation (Eℓ), notée γ ∈ R, et véri�er que
la solution u trouvée en question 1 satisfait

lim
x→+∞

u(x) = γ.

On admet à présent dans toute la suite du sujet que les propriétés observées sur u, la solution de (Cℓ),
restent véri�ées sur y, la solution de (C). En particulier, on admet que :

• y est décroissante sur R+,

• lim
x→+∞

y(x) = c, où c ∈ R.

3 ▷ Montrer que c est une solution constante de (E), puis que (E) admet exactement deux solutions
constantes notées c1 et c2 telles que c1 < 0 < c2. En déduire la valeur de c en fonction de c1 et c2.

Partie II. Séries de Dirichlet

On propose dans cette partie d'étudier des séries de fonctions particulières appelées séries de Dirichlet.

Dé�nition 1 Une série de fonctions
∑
n⩾0

fn est dite de Dirichlet si

∀x ∈ R+ fn(x) = ane
−λnx,

où la suite de réels (an)n∈N véri�e, pour une valeur donnée M ∈ R∗
+,

∀n ∈ N |an| ⩽
M

2n
,

et la suite de réels (λn)n∈N est strictement croissante et véri�e

λ0 = 0, lim
n→+∞

λn = +∞, et λn =
n→+∞

O(n).

Pour tout k ∈ N, on dé�nit alors la quantité bk =
+∞∑
n=1

λk
nan.

4 ▷ Montrer que pour tout k ∈ N, les réels bk sont bien dé�nis.

5 ▷ Montrer que toute série de Dirichlet
∑
n⩾0

fn converge uniformément sur R+. On note alors f sa

somme. Justi�er que f est continue sur R+.

6 ▷ Exprimer f(0) et lim
x→+∞

f(x) en fonction de a0 et b0.

7 ▷ Soit k ∈ N∗. Montrer que f ∈ Ck(R+,R) et donner une expression de x 7→ f (k)(x). Exprimer
ensuite f (k)(0) en fonction de bk.

8 ▷ Montrer que si f(x) = 0 pour tout x ∈ R+ alors an = 0 pour tout n ∈ N.
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Partie III. Relations sur les coe�cients de la série de Dirichlet

Revenons au problème de Cauchy (C), et à l'étude de sa solution y ∈ C∞(R+,R). Supposons dorénavant
que y est la somme d'une somme de Dirichlet, c'est-à-dire que

∀x ∈ R+ y(x) =

+∞∑
n=0

ane
−λnx,

où les suites (an)n∈N et (λn)n∈N véri�ent les propriétés mentionnées en dé�nition 1. On introduit éga-
lement la fonction g ∈ C∞(R+,R) dé�nie par

∀x ∈ R+ g(x) = ey(x).

9 ▷ Exprimer a0 et b0 en fonction de la constante c introduite en partie I.

10 ▷ En utilisant l'équation (E) satisfaite par y, calculer b1.

11 ▷ Montrer que pour tout k ∈ N∗,

g(k)(0) = (−1)kdk,

où les coe�cients dk sont dé�nis par

d0 = 1, et ∀k ⩾ 1 dk =

k∑
i=1

(
k − 1

i− 1

)
dk−ibi.

12 ▷ Soit k ∈ N∗. En utilisant l'équation (E), satisfaite par y, exhiber une relation de récurrence liant
bk+1, bk et dk.

Partie IV. Approximation de la solution y

Soit N ∈ N∗. Pour approcher la solution y de (C), on propose dans cette partie de tronquer toutes
le sommes en s'arrêtant au terme de rang N . Les résultats de la partie III permettant d'obtenir une
approximation des quantités βk dé�nies pour tout k ∈ N par

βk =

N∑
n=1

λk
nan.

On introduit également la fonction tronquée yN : R+ → R dé�nie par

∀x ∈ R+ yN (x) =

N∑
n=0

ane
−λnx.

En se donnant les valeurs de la suite (λn)n∈N, on veut dans cette partie calculer les valeurs des coe�cients
an pour n de 1 à N . On utilisera les notations

A =


a1
a2
...

aN

 ∈ RN , et B =


β0

β1

...
βN−1

 ∈ RN .
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13 ▷ Montrer que

∥yN − y∥∞,R+
⩽

M

2N
,

et déduire que yN converge uniformément vers y sur R+. Proposer ensuite un intervalle J ⊂ R+

où la majoration de ∥yN − y∥∞,J serait plus �nie.

14 ▷ Montrer que V A = B où V ∈ MN (R) est une matrice que l'on explicitera.

15 ▷ Prouver que le système V A = B admet une unique solution A ∈ RN .

Partie V. Modèle de propagation d'épidémie SIR

Pour modéliser la propagation d'une épidémie non létale au sein d'une population d'individus, on peut
utiliser le modèle de propagation d'épidémie appelé SIR. Dans ce modèle, la population est séparée en
trois groupes :

• Le groupe des personnes susceptibles, n'ayant pas attrapé la maladie, est noté S et sa proportion
au cours du temps est représentée par la fonction S ∈ C∞(R+,R).

• Le groupe des personnes infectées par la maladie est noté I et sa proportion au cours du temps est
représentée par la fonction I ∈ C∞(R+,R).

• Le groupe des personnes ayant contracté la maladie puis récupéré est noté R. On suppose qu'un
individu ne peut attraper la maladie qu'une seule fois dans sa vie. Une fois dans le groupe des
individus récupérés, il y reste dé�nitivement et ne redevient jamais susceptible. La proportion du
groupe R au cours du temps est représentée par la fonction R ∈ C∞(R+,R).

On a ainsi la relation

∀x ∈ R+ S(x) + I(x) +R(x) = 1.

Dans un modèle de propagation d'épidémie SIR, ces trois fonctions sont de plus des solutions d'un
problème de Cauchy associé à un système d'équations di�érentielles non linéaires

(F ) :


S′(x) = −I(x)S(x)

I ′(x) = I(x)S(x)− I(x)

R′(x) = I(x) S(0) = S0, I(0) = I0, R(0) = R0

,

où S0, I0, R0 ∈ [0, 1] sont les conditions initiales. On admet dans la suite le résultat suivant :

Théorème 1 Pour (S0, I0, R0) �xé, le problème de Cauchy (F ) admet une unique solution (S, I,R) ∈
(C∞(R+,R))

3. De plus, si (S, I,R) et (S̃, Ĩ, R̃) sont les solutions associées aux conditions initiales
(S0, I0, R0) et (S̃0, Ĩ0, R̃0), alors

(S0, I0, R0) ̸= (S̃0, Ĩ0, R̃0) ⇒ ∀x ∈ R+ (S(x), I(x), R(x)) ̸= (S̃(x), Ĩ(x), R̃(x)).

16 ▷ On suppose S0 = 0. Donner l'expression du triplet solution (S, I,R) du système (F ).

17 ▷ Montrer que si S0 > 0 alors la fonction S du triplet solution (S, I,R) de (F ) ne s'annule jamais, et
en déduire que S est strictement positive.

18 ▷ Supposons que S0 > 0. Montrer que la fonction S du triplet solution (S, I,R) de (F ) véri�e la
relation (

−S′

S

)′

= −S′ +
S′

S
.
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On se place à partir de maintenant dans le cas où S0 = 1
2 , I0 = 1

2 et R0 = 0. On introduit de plus la
fonction h : R+ → R dé�nie par

∀x ∈ R+ h(x) = ln

(
S(x)

S0

)
= ln (2S(x)) .

19 ▷ Montrer que h est solution du problème de Cauchy (C).

Pour approcher la fonction S, on introduit la fonction SN : R+ → R dé�nie par

∀x ∈ R+ SN (x) = S0e
yN (x) =

1

2
exp

(
N∑

n=0

ane
−λnx

)
.

20 ▷ Montrer que SN converge uniformément vers S sur R+ quand N → +∞ et que

∥SN − S∥∞,R+
⩽

Me2M

2N+1
.

Partie VI. Modèle probabiliste

Toutes les variables aléatoires que l'on sera amené à considérer dans la suite sont dé�nies sur un espace
probabilisé (Ω,A, P ). On rappelle que

(
a
b

)
est nul si b > a.

Pour toute suite de variables aléatoires (Un)n⩾0, on note :

∀n ∈ N, ∆Un = Un+1 − Un.

Dans tout ce qui suit, on considère une population P de M ⩾ 1 individus, et l'on �xe K ∈ {0, . . . ,M}.
On note

E = {(s, i, r) ∈ N3, s+ i+ r = M}.

On considère maintenant un autre modèle de propagation de la même épidémie non létale pendant
plusieurs jours au sein de la population P.
Chaque matin, la population se répartit en trois classes distinctes : les personnes susceptibles (jamais
infectées), les personnes infectées, et les personnes rétablies (et désormais immunisées). On note S̃n, Ĩn
et R̃n les e�ectifs des trois classes au matin du n-ième jour et on convient que

S̃0 > 0, Ĩ0 ⩾ 1,

de sorte que l'on ne soit pas dans un cas trivial où l'épidémie est �nie ou ne peut pas commencer.
Lorsqu'au matin du n-ième jour, (S̃n, Ĩn, R̃n) = (s, i, r) ∈ E, l'évolution quotidienne est la suivante :

� dans la journée, chacune des s personnes saines rencontre, indépendamment des autres,K personnes
au hasard parmi les M personnes de la population totale. Dès que l'une au moins des rencontres se
fait avec une personne infectée, la personne saine en question devient infectée le lendemain matin ;

� dans le même temps, chaque personne infectée peut guérir à la �n de la journée avec une probabilité
ρ �xée dans ]0, 1[.

21 ▷ Soit (s, i, r) ∈ E. Conditionnellement à l'événement
(
(S̃n, Ĩn, R̃n) = (s, i, r)

)
, quelle est la proba-

bilité, notée p(i), pour une personne susceptible d'être infectée lors de cette journée ?

22 ▷ Soit Z une variable aléatoire à valeurs dans {0, . . . ,M}. Montrer que :

E [Z] =
∑

(s,i,r)∈E

(
M∑
k=0

kP
(
Z = k

∣∣∣(S̃n, Ĩn, R̃n) = (s, i, r)
))

P
(
(S̃n, Ĩn, R̃n) = (s, i, r)

)
. (1)
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23 ▷ Justi�er que pour tout n ⩾ 0, les variables aléatoires S̃n, Ĩn et R̃n ainsi que les variables aléatoires
∆S̃n,∆Ĩn et ∆R̃n, ont une espérance �nie.

24 ▷ Établir l'identité suivant :

E
[
∆R̃n

]
= ρE

[
Ĩn

]
.

25 ▷ Établir l'identité suivant : pour (s, i, r) ∈ E, pour tout k ∈ {0, . . . , s},

P
(
∆S̃n = −k

∣∣∣(S̃n, Ĩn, R̃n) = (s, i, r)
)
=

(
s

k

)
(p(i))

k
(1− p(i))

s−k
.

26 ▷ Montrer que

E
[
∆S̃n

]
= −E

[
S̃np

(
Ĩn

)]
,

puis en déduire l'équation satisfaite par E
[
∆Ĩn

]
.

FIN DU PROBLÈME
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