
Fonctions holomorphes

On admettra le résultat suivant (voir un des prochain TD.).
Pour toute applucation g de R dans C , 2π-périodique, de classe C1, la série d'applications

(série de Fourier

c0(g) +
∑
n=≥1

cn(g) exp(in·) + c−n(g) exp(−in·),

où pour tout n ∈ Z

cn(g) =
1

2π

∫ 2π

0

f(t) exp(−int)dt,

converge normalement de somme g.
Définitions premières propriétés

Soit f une application d'un ouvert U non vide de C (vu comme un R-espace vectoriel
de dimension 2), à valeurs complexes. On dit que f est C-dérivable en un point z0 de U si,
par dé�nition,f(z)−f(z0)

z−z0
admet une limite lorsque z tend vers z0 par valeurs distinctes. Si f est

C-dérivable en z0 on note f ′(z0) := lim
z→z0,z ̸=z0

f(z)−f(z0)
z−z0

et l'on appelle cette quantité dérivée

complexe de f en z0.
1. Montrer que f est C-dérivable en un point z0 de U si et seulement si il existe un complexe

c tel que
f(z) = f(z0) + c(z − z0) + o(|z − z0|), (z → z0).

2. L'application f est dite holomorphe si, par dé�nition, f est dérivable en tout point z de
U et si son application dérivée complexe, f ′ : U → C ; z 7→ f ′(z), est continue.

3.Exemples
Parmis les applications de C dans C suivantes déterminer celles qui sont holomorphes :

z 7→ 1 ; z 7→ z ; z 7→ ℜ(z) ; z 7→ z̄

4. Soit f1 et f2 des applications de U dans C holomorphes et λ et µ des nombres complexes.
Montrer que λf1 + µf2, f1 × f2 et si f1 ne s'annule pas, 1

f1
sont holomorphes ; préciser leur

applications dérivées complexes.
5. Soit g une application d'un ouvert V non vide de C à valeurs complexes holomorphe. On

suppose que f(U) ⊂ V . Montrer que g ◦ f est holomorphe et préciser son application dérivée
complexe.

6. Montrer que toute application polynômiale de C dans C est holomorphe.

Caractérisation réelle

On va voir que si f est holomorphe, alors, vue comme une application de R2 dans R2, elle
est de classe C1, mais que la réciproque est fausse, et qu'il faut adjoindre au caractère C1 une
condition supplémentaire pour obtenir l'holomorphie.

7. On désigne par U∗ l'ensemble des éléments (x, y) de R2 tels que x+ iy ∈ U . Montrer que
U∗ est un ouvert de R2.

8. On désigne par f ∗ l'application de U∗ dans C, qui à (x, y) associe f(x + iy), on désigne
par f̃ l'application de U∗ dans R2 qui à (x, y) associe (ℜ(f(x+ iy), ℑ(f(x+ iy))), en�n on
note P et Q les première et seconde composantes de f̃ . Ainsi pour tout (x, y) ∈ U∗

f(x+ iy) = f ∗(x, y) = P (x, y) + iQ(x, y), f̃(x, y) = (P (x, y), Q(x, y)) .

Montrer que les 3 conditions suivantes sont équivalentes :



i f est holomorphe.

ii f ∗ est de classe C1 et
∂f ∗

∂y
= i

∂f ∗

∂x
.

iii f̃ est de classe C1 et
∂P

∂x
=

∂Q

∂y
;
∂Q

∂x
= −∂P

∂y
.

Dans le cas où f est holomorphe, exprimer pour (x, y) élément de U∗, f ′(x+ iy) en fonction
des dérivées partielles, de f ∗ puis des dérivées partielles de P et de Q.

9. Montrer que la somme d'une série entière de rayon de convergence non nul, est une
application holomorphe.

10. On dira qu'une application h d'un ouvert W de C non vide, à valeurs dans une partie
V de C est holomorphe si l'application W → C ; z 7→ h(z) est holomorphe.

On suppose que f est holomorphe et injective. On suppose que f ′ ne s'annule pas. Montrer
que df̃ est une similitude directe de R2, muni de sa structure euclidienne canonique.

ANNULÉE (Montrer que f induit une bijection de U sur f(U), et que la bijection réciproque
g est holomorphe.)

Analyticité des fonctions holomorphes

11. On suppose que f est analytique, c'est-à-dire développable en série entière au voisinage
de tout point de U . Montrer que f est holomorphe.

12. On suppose que f est holomorphe. Soient z0 un point de U de partie réelle x0 de partie
imaginaire y0 et r un réel strictement positif tel que BO(Z0, r) ⊂ U . Soit en�n l'application

F : ]0, r[×R → C ; (ρ, θ) 7→ f ∗(x0 + ρ cos θ, y0 + ρ sin θ) = f(z0 + ρeiθ)

a) Montrer que F est de classe C1 et exprimer
∂F

∂ρ
en fonction de

∂F

∂θ
.

b) Montrer que pour tout élément ρ de ]0, r[, il existe une famille (αn(ρ))n∈Z telle que :

f(z0 + ρeiθ) =
+∞∑

n=−∞

αn(ρ)e
inθ.

c) Montrer que pour tout n ∈ Z, l'application αn : ]0, r[→ C ; ρ 7→ αn(ρ) est dérivable et
que pour tout ρ ∈]0, r[, α′

n(ρ) =
n
r
αn(ρ).

d) En déduire qu'il existe une famille (an)n∈Z, telle que pour tout complexe z tel que
0 < |z − z0| < r,

f(z) =
+∞∑

n=−∞

an(z − z0)
n.

On donnera l'expression des an, n ∈ Z, au moyen d'une intégrale.
e) Montrer que pour tout entier n < 0, |an| = 0. En déduire que f est analytique.

13. Montrer que toute application de U dans C, holomorphe est indé�niment dérivable au
sens complexe.

14. Montrer qu'une application de C dans C, holomorphe et majorée, est constante.
15. Déduire de ce qui précède le théorème de d'Alembert-Gauÿ.



Intégrales sur un chemin

On ne suppose pas connue l'analycité des fonctions holomorphes.

U désigne un ouvert U de C, on lui associe la partie de R2, U∗ := {(x, y) ∈ R2|(x+ it ∈ U}.
Premières définitions

On appelle chemin C1 par morceaux de U toute application γ d'un segment [a, b] à valeurs
dans U continue et C1 par morceaux. Si de plus γ(a) = γ(b) on dit que le chemin est un lacet.
A un chemin C1 par morceaux de U , on associe l'arc géométrique orienté Γ∗ de U∗, dont un
représentant est ([a, b], (ℜ(γ),ℑ(γ)).

Soient f une application de U dans C continue et γ un chemin C1 par morceaux de U ,
et (a0, a1, . . . , an) une subdivision de [a, b] adaptée à γ. On appelle intégrale de f le long du
chemin γ la quantité notée

∫
γ
f(z)dz dé�ne par :

∫
γ

f(z)dz :=

∫ b

a

n−1∑
i=0

∫ ai+1

ai

f(γ(t)γ′(t)dt.

Cette quantité est indépendante de la subdivision adaptée choisie, ce que l'on admettra dans
la suite. On appelle la longueur de γ la longueur de Γ∗, c'est-à-dire :∫ b

a

n−1∑
i=0

∫ ai+1

ai

∥
−→
Γ′ (t)∥dt.

On dé�nit de même pour un champ de vecteur
−→
V = (V1, V2), dé�ni sur U∗, continue,

l'intégrale (ou circulation) de V⃗ le long du chemin Γ∗, quantité notée
∫
Γ∗ V⃗ , par :

∫
Γ∗

V⃗ :=

∫ b

a

n−1∑
i=0

∫ ai+1

ai

〈
V⃗ (Γ∗(t)|

−→
Γ∗′(t)

〉
dt.

Cette quantité est également indépendante de la subdivision adaptée choisie.
1. Soit ϕ un C1 di�éomorphisme croissant d'un segment [c, d] sur [a, b]. On pose δ := γ ◦ ϕ.

montrer que δ est un chemin C1 par morceaux de U et que∫
γ

f(z)dz =

∫
δ

f(z)dz.

2. On reprend les notations de l'exercice précédent (question 8. Montrer qu'il existe deux
champs de vecteurs V⃗1 et V⃗2 sur U∗ telles que :∫

γ

f(z)dz =

∫
Γ∗

V⃗1 + i

∫
Γ∗

V⃗2.

On exprimera V⃗1 et V⃗2 en fonction de P et Q.
3. On suppose dans cette question que U est convexe et que f est holomorphe. Montrer que

V1 et V2 dérivent d'un potentiel, voir annexe.
Que dire de

∫
γ
f(z)dz si γ est un lacet. On note pour i = 1, 2, Φi un potentiel dont dérive

−→
V i, (∇⃗Φi = V⃗i), et l'on pose :

F : U → C ; z 7→ Φ1(x, y) + iΦ2(x, y),



avec x = ℜ(z), y = ℑ(z). Montrer que F est holomorphe et que F ′ = f . On dit que F est une
primitive de f .

Formule de Goursat

Soient γ1 et γ2 des chemins C1 par morceaux de U dé�nies respectivement sur les segments
[a1, b1] et [a2, b2]. On dé�nit un nouveau chemin C1 par morceaux de U noté γ1 ∪ γ2 par

γ1 ∪ γ2 : [a1, b1 + (b2 − a2)] → C ; t 7→
{

γ1(t), pour t ∈ [a1, b1],
γ2(t+ a2 − b1), pour t ∈]b1, b1 + (b2 − a2)].

On dispose ainsi d'une opération sur les chemins C1 par morceaux de C, qui est visiblement
associative.

En�n pour u et v points quelconque deC, on note γu,v le chemin [0, 1] → C ; t 7→ (1−t)u+tv.

4. Soit (z1, z2, z3) un triangle direct de C. On suppose que le triangle plein T de sommets
z1, z2, z3 est inclus dans U . On note γT le lacet γz1,z2 ∪ γz2,z3 ∪ γz3,z2

On suppose que f est holomorphe sur U − {z0}, où z0 est un point quelconque de U et
continue sur U . On se propose démontrer que

∫
γT

f(z)dz = 0 : ≪ l'intégral de f sur un triangle
est nulle ≫

a) Montrer que le résulta pour f constante et pour f : z 7→ z.
b) On suppose dans cette sous question que z0 /∈ T . On pose T0 = T et T 1

0 , . . . T
4
0 les

triangles semblables à T0 de rapports respectifs 1
2
, 1
2
, 1
2
,−1

2
obtenus en prenant les milieux des

segments qui forment la frontière de T .

i) Montrer qu'il existe j ∈ {1, . . . , 4} tel que

∣∣∣∣∫γ
T
j
0

f(z)dz

∣∣∣∣ ≥ 1
4

∣∣∣∫γT f(z)dz
∣∣∣ . On notera

T j
0 = T1

ii) Montrer plus généralement qu'il existe une suite (Tk)k∈N de triangles telle que :
� T0 = T ,
� Pour tout k ∈ N, Tk+1 ⊂ Tk,
� Pour tout k ∈ N la longueur de γTk+1

est la moitié de celle de 1
2
γTk

,

�
∣∣∣∫γT f(z)dz

∣∣∣ ≤ 4k
∣∣∣∫γTk f(z)dz∣∣∣ .

iii) Montrer que ∩
k∈N

Tk est un singleton {u}. Et en déduire le résultat.

Indication : On pourra rtermarquer que :
∫
γTk

f(z)dz =
∫
γTk

f(z)− f(u)− (z − u)f ′(u)dz.

c) Montrer le résultat dans le cas général. On pourra commencer en décomposant T en
triangles, à se ramener au cas où z0 est un sommet de T .

5. On suppose toujours que f est holomorphe sur U −{z0} et que U est un ouvert convexe.
Déduire de la question 4. que f admet une primitive F sur U . On vient de généraliser 3. En
déduire que l'intégrale de f sur tout lacet C1 par morceaux de U est nulle.

Indice d'un lacet par rapport à un point

γ est un lacet C1 par morceaux de C, dé�ni sur [a, b], en�n z0 est un point de C qui n'est
pas élément de γ([a, b]).

On pose Indz0 =
1

2πi

∫
γ

dz
z−z0

.

6. En étudiant l'application G : [a, b] ; t 7→ exp
(∫ t

0
γ′(s)

γ(s)−z0
ds
)
, montrer que Indz0(γ) est

un élément de Z.
7. On considère le cas particulier où γ : [0, 2π] → C ; t 7→ z0 + r exp(int) avec n ∈ N∗ et

r ∈ R∗
+. Déterminer Indz0(γ).



8. On admet que C − γ([a, b]) admet deux composantes connexes par arcs dont une est
non bornée. Montrer que z 7→ Indz(γ) est constante sur les composantes connexes par arcs de
C− γ([a, b]) et nulle sur la composant connexes par arcs non bornée.

Formule de la moyenne

5. On suppose que que U est un ouvert convexe. Soit z0 un point de U et γ un lacet C1 par
morceaux de U , dé�nie sur [a, b] et tel que z0 /∈ γ([a, b].

En considérant l'application g : U → C ; z 7→
{

f(z)−f(z0)
z−z0

, pour z ̸= z0,

f ′(z0)), pour z = z0,
montrer que :

Indz0(γ)f(z0) =
1

2πi

∫
γ

f(z)
z−z0

dz

6. Déduire de la question précédente qu'une fonction holomorphe sur un ouvert U est analy-
tique. Plus précisément, pour tout point z0 de U f est développable en série entière au voisinage
de z0 dans tout disque ouvert centré en z0 et inclus dans U .

Annexe

Par V⃗ on désigne une application de U∗ supposé convexe et contenant (0, 0), dans R2 de
classe C1 ; V1 désigne la première composante de V⃗ , V2 la seconde.

1. On suppose dans cette question que V⃗ est le gradient d'une application U de U∗ dans
R a priori de classe C1, V⃗ = ∇⃗U . On dit que V⃗ dérive du potentiel −U (ou parfois U).

Montrer que
∂V1

∂y
=

∂V2

∂x
(1)

2. Réciproquement supposons que la condition (1) soit satisfaite. On pose :

U : U∗ → R ; (x, y) 7→
∫ 1

0

xV1(tx, ty) + yV2(tx, ty)dt.

Montrer que U est de classe C1 et que V⃗ = ∇⃗U .


