MP* Lycée Kérichen 2025-2026

Correction du DM n°5
EXERCICE I
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2. Pour tout entier n > 0 et tout x € [0, 1],
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et donc, par positivité de 'intégrale :
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Par encadrement, I,, — 0.
n—-+00

3. Procédons par deux intégrations par parties que rendent licites la rationnalité des inté-
grandes.
Pour tout n € N,
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D’une part lorsque n tend vers = oo,
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D’autre part, tout comme I,,, fol %dx — 0, et donc n?J, — 0 donc finalement :
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Soit n € N.
Pour tout K € N*, et tout x € [0,1],
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et donc
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obtenue de maniére

La deuxiéme question, donne la convergence de la série S = +2k 5
>0

concurrente par le théoréme sur les séries alternées et :

" k:0n+2k:+2'

Le théoréeme d’interversion série/intégrale(a venir), ne peut ici s’appliquer. Le théo-
réeme de convergnce dominée (4 venir) peu par contre étre tenté. On pourrait aussi utiliser
de la convergence uniforme sur un segment [0,al, a < 1 et passer ensuite & la limite sur
a, avec de la convergence uniforme de la série en al!!

EXERCICE 1II

1.

Classique. Ici comme h est continue ont peut méme montrer (bien que ce soit peu
glorieux) que pour tout = € R et tout n € N,
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en dérivant en x, puis que

par récurrence sur n, grace au premier point!

Une méthode qui se généralise a des fonctions non continues repose sur la loi de
Chasles et un changement de variable affine.

. Immeédiat par intégration par parties (cf. question suivante).

On pose h = h— < h >. L’application h est T-périodique de valeur moyenne nulle. Soit
alors

H: R—R; x’—)/ h(t)dt
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Par la question 1, H est T-périodique, ¢’est par continuité de 4 une primitive de cette
application. Alors :
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Donc puisque H est bornée sur R par continuité et T-périodicité, et que f et f’ le sont
sur [a, b] par continuité
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Par encadrement fff(t)h(nt)— <h> f;f(t) tend bien vers 0, lorsque n tend vers
+00.



