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EXERCICE I

1.

I2 =

∫ 1

0

x2

1 + x2
dx =

∫ 1

0

1dx−
∫ 1

0

1

1 + x2
dx = [1− arctan(x)]10 = 1− π

4
.

I3 =
1

2

∫ 1

0

x2

1 + x2
(2x)dx =

1
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∫ 1

0

y

1 + y
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1
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∫ 1

0

1dy − 1
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∫ 1

0

1

1 + y
dy

=
1

2
− 1

2
[ln(1 + y)]10 =

1

2
(1− ln 2).

2. Pour tout entier n ≥ 0 et tout x ∈ [0, 1],

0 ≤ xn

1 + x2
≤ xn,

et donc, par positivité de l'intégrale :

0 ≤
∫ 1

0

xn

1 + x2
dx ≤

∫
xndx =

1

n+ 1
.

Par encadrement, In →
n→+∞

0.

3. Procédons par deux intégrations par parties que rendent licites la rationnalité des inté-
grandes.

Pour tout n ∈ N,

In =

[
xn+1

(n+ 1)

1

1 + x2

]1
0

+

∫ 1

0

xn+1

n+ 1

2x

(1 + x2)2
dx

=

[
xn+1

(n+ 1)(1 + x2)
+

xn+3

(n+ 1)(n+ 3)

2

(1 + x2)2

]1
0

+

∫ 1

0

xn+3

(n+ 1)(n+ 3)

8x

(1 + x2)3
dx

=
1

2

(
1

(n+ 1)
+

1

(n+ 1)(n+ 3)

)
+ Jn,

où Jn = 1
(n+1)(n+3)

∫ 1

0
8xn+4

(1+x2)3
dx.

D'une part lorsque n tend vers = ∞,

1

2

(
1
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+

1

(n+ 1)(n+ 3)

)
=
1

2

(
1

n

(
1 +

1

n

)−1

+
1

n2

(
1 +

1

n

)−1(
1 +

3

n

)−1
)

=
1

2

(
1

n

(
1− 1

n
+ o

(
1

n

))
+

1

n2
(1 + o (1))

)
=

1

2n
− 1

2n2
+

1

2n2
+ o

(
1

n2

)
=

1

2n
+ o

(
1

n2

)
.

D'autre part, tout comme In,
∫ 1

0
8xn+4

(1+x2)3
dx →

n→+∞
0, et donc n2Jn →

n→+∞
0 donc �nalement :

In =
1

2n
+ o

n→+∞

(
1

n2

)
.
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4. Soit n ∈ N.

Pour tout K ∈ N∗, et tout x ∈ [0, 1[,

xn

1 + x2
=

K∑
k=0

(−1)kxn+2k +
(−1)K+1xn+2K+1

1 + x2
,

et donc

In =
K∑
k=0

(−1)k

n+ 2k + 1
+ (−1)K+1In+2K+1.

La deuxième question, donne la convergence de la série
∑
k≥0

(−1)k

n+2k+2
, obtenue de manière

concurrente par le théorème sur les séries alternées et :

In =
+∞∑
k=0

(−1)k

n+ 2k + 2
.

Le théorème d'interversion série/intégrale(à venir), ne peut ici s'appliquer. Le théo-
rème de convergnce dominée (à venir) peu par contre être tenté. On pourrait aussi utiliser
de la convergence uniforme sur un segment [0, a], a < 1 et passer ensuite à la limite sur
a, avec de la convergence uniforme de la série en a ! ! !

EXERCICE II

1. Classique. Ici comme h est continue ont peut même montrer (bien que ce soit peu
glorieux) que pour tout x ∈ R et tout n ∈ N,∫ x+nT

x

h(t)dt =

∫ nT

0

h(t)dt

en dérivant en x, puis que ∫ nT

0

h(t)dt = nT < h >

par récurrence sur n, grâce au premier point !

Une méthode qui se généralise à des fonctions non continues repose sur la loi de
Chasles et un changement de variable a�ne.

2. Immédiat par intégration par parties (cf. question suivante).

3. On pose h̃ = h− < h >. L'application h̃ est T -périodique de valeur moyenne nulle. Soit
alors

H : R → R ; x 7→
∫ x

0

h̃(t)dt.

Par la question 1, H est T -périodique, c'est par continuité de h̃ une primitive de cette
application. Alors :

∫ b

a

f(t)h(nt)dt− < h >

∫ b

a

f(t)dt =

∫ b

a

h̃(nt)f(t)dt

=
I.P.P.

1

n
[H(nt)f(t)]ba −

1

n

∫ b

a

f ′(t)H(nt)dt
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Donc puisque H est bornée sur R par continuité et T -périodicité, et que f et f ′ le sont
sur [a, b] par continuité

∣∣∣∣∫ b

a

f(t)h(nt)dt− < h >

∫ b

a

f(t)dt

∣∣∣∣ ≤
sup

y∈[0,T ]

|H(y)|

n

(
2 sup
t∈[a,b]

|f(t)|+ (b− a) sup
t∈[a,b]

|f ′(t)|

)

Par encadrement
∫ b

a
f(t)h(nt)− < h >

∫ b

a
f(t) tend bien vers 0, lorsque n tend vers

+∞.
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