
Corrigé du problème du DM 5

Inégalité de Prékopa et Leindler.

D'après M. Cornilleau

Partie I. Une inégalité de Prékopa et Leindler.

1. • Si a = 0 ou b = 0, alors l'inégalité à démontrer est évidente.
Sinon, la concavité du logarithme (dérivée d'ordre 2 négative) veut que :

ln(λa+ (1− λ)b) ⩾ λ ln(a) + (1− λ) ln(b).

D'où par croissance de l'exponentielle, l'inégalité proposée.
soit fu : x ∈ R+ 7→ xu ∈ R, dé�ni avec la convantion de l'énoncé.la restriction de fu Ã R∗

+ est convexe car

∀x > 0, f ′′u (x) = u(u− 1)xu−2 > 0.

D'ou l'inégalité pour a et b non nuls et même pour a ou/et b nuls puisque fu est continue.

2. Fixons b ⩾ 0 et étudions la fonction f : a ∈ R+ 7→ (a + b)λ − (aλ + bλ) ∈ R. f est une fonction dérivable sur
]0,+∞[ et

∀a > 0, f ′(a) = λ((a+ b)λ−1 − aλ−1).

Puisque λ − 1 < 0, la fonction x > 0 7→ xλ−1 ∈ R est décroissante et donc pour tout a > 0, f ′(a) ⩽ 0. f est
donc décroissante sur R+ et puisque f(0) = 0, on a bien

(a+ b)λ ⩽ aλ + bλ.

3. Soit φ : u ∈ R 7→ 1
F

∫ u

−∞ f(x)dx = 1
F

∫ 0

−∞ f(x)dx+ 1
F

∫ u

0
f(x)dx.

f étant une fonction continue sur R, φ est une fonction de classe C1 sur l'intervalle R et φ′ = 1
F f > 0, donc

φ′ ne s' annulle pas.

φ réalise donc une bijection de R sur φ(R) et la bijection réciproque est C1. De plus

lim
u→−∞

φ(u) =
1

F

(∫ 0

−∞
f(x)dx+ lim

u→−∞

∫ u

0

f(x)dx

)
=

1

F

(∫ 0

−∞
f(x)dx−

∫ 0

−∞
f(x)dx

)
= 0,

lim
u→+∞

φ(u) =
1

F

(∫ 0

−∞
f(x)dx+ lim

u→+∞

∫ u

0

f(x)dx

)
=

1

F

(∫ 0

−∞
f(x)dx+

∫ +∞

0

f(x)dx

)
= 1.

Donc φ réalise donc une bijection de R sur ]0, 1[.
Posons u = φ−1. Pour tout t ∈]0, 1[, et tout réel x, on 1

F

∫ x

−∞ f(x)dx = φ(u(t)) = t si et seulement si
x = u(t).

La preuve de l'existence de la fonction v est absolument identique (en raisonnant à partir de ψ : v 7→
1
G

∫ v

−∞ g(x)dx).

4. On a vu que u est de classe C1 sur ]0, 1[ de plus le théorème de la bijection C1 dit :

∀t ∈]0, 1[, u′(t) = 1

φ′(u(t))
=

F

f(u(t))
> 0.

On procède identiquement pour calculer v′. On obtient alors

∀t ∈]0, 1[, v′(t) = 1

ψ′(v(t))
=

G

g(v(t))
> 0.

5. Les fonctions u et v sont donc strictement croissantes sur ]0, 1[.
De plus, puisque lim

−∞
φ = 0, lim

+∞
φ = 1 et que u = φ−1,

lim
t→0

u(t) = −∞, lim
t→1

u(t) = +∞.

De manière identique, on a
lim
t→0

v(t) = −∞, lim
t→1

v(t) = +∞.



Puisque w = λu+(1−λ)v, w est une fonction de classe C1 sur l'intervalle ]0, 1[ dont la dérivée, λu′ +(1−λ)v′,
ne s'annule pas car strictement positive, de plus

lim
t→0

w(t) = −∞, lim
t→1

w(t) = +∞

ce qui montre que w est une bijection de classe C1 (strictement croissante) de ]0, 1[ dans R. Donc w dé�nit un
changement de variable admissible de ]0, 1[ dans R.

On peut alors écrire, en utilisant ce changement de variables et l'hypothèse sur f, g, h,∫ +∞

−∞
h(x)dx =

∫ 1

0

h(w(t))w′(t)dt ⩾
∫ 1

0

f(u(t))λg(v(t))1−λw′(t)dt.

D'autre part, d'après l'inégalité de la question 1, on a pour tout t ∈]0, 1[,

w′(t) = λu′(t) + (1− λ)v′(t) ⩾ u′(t)λv′(t)1−λ =
Fλ

f(u(t))λ
G1−λ

g(v(t))1−λ

d'après l'expression de u′ et v′ obtenue à la question précédente.
En réinjectant cette inégalité dans l'intégrale, on a donc∫ +∞

−∞
h(w)dw ⩾

∫ 1

0

FλG1−λdt =

(∫ +∞

−∞
f(x)dx

)λ (∫ +∞

−∞
g(x)dx

)1−λ

,

ce qui démontre l'inégalité � P-L �.

6. La convexité de la fonction x 7→ x2 (cette fonction est deux fois dérivable et de dérivée seconde égale à 2 > 0).
assure que :

(λx+ (1− λ)y)2 ⩽ λx2 + (1− λ)y2.

Donc
Ψ(λx+ (1− λ)y) ⩾ Ψ(x)λΨ(y)1−λ.

puisque t 7→ e−t est un fonction strictement décroissante.

7. Supposons d'abord |y| ⩽M .
Si |z| ⩽ M̂ alors Ψ(x) ⩽ 1 = Ψ(z).
Supposons |z| > M̂ . D'après l'inégalité triangulaire et la dé�nition de Θ ⩽ 1,

|z| ⩽ Θ(|x|+ |y|) ⩽ Θ(|x|+M) = Θ|x|+ M̂.

Soit Θ2x2 ⩾ (|z| − M̂)2 par croissance de x 7→ x2 sur R+, donc par décroissance stricte de t 7→ e−t,

Ψ(x) ⩽ ΨM (z).

En échangeant les rôles de x et y ainsi que ceux de λ et de 1 − λ, on en déduit que Ψ(y) ⩽ ΨM (z) pour
|x| ⩽M .

8. Fixons x, y ∈ R.
D'après la question 2, on a d'abord

fε(x)
λgε(y)

1−λ = (f(x) + εΨ(x))λ(g(y) + εΨ(y))1−λ ⩽ (f(x)λ + ελΨ(x)λ)(g(y)1−λ + ε1−λΨ(y)1−λ)

En développant et puisque ελ ⩽ εΛ, ε1−λ ⩽ εΛ (car ε ∈]0, 1[), on obtient donc

fε(x)
λgε(y)

1−λ ⩽ f(x)λg(y)1−λ + εΛ(Ψ(x)λg(y)1−λ +Ψ(y)λf(x)1−λ) + εΨ(x)λΨ(y)1−λ.

D'après la question 6, on a ensuite Ψ(x)λΨ(y)1−λ ⩽ Ψ(z) et par hypothèse sur f, g, h f(x)λg(y)1−λ ⩽ h(z).
On a donc

fε(x)
λgε(y)

1−λ ⩽ h(z) + εΛ(Ψ(x)λg(y)1−λ +Ψ(y)λf(x)1−λ) + εΨ(z).

De plus, si |y| > M , alors on a évidemment Ψ(x)λg(y)1−λ ⩽ ∥g∥1−λ
∞ (ΨM (z))Λ

Supposons maintenant |y| ⩽M , on a d'après la question précédente Ψ(x) ⩽ ΨM (z) et donc

Ψ(x)λg(y)1−λ ⩽ ∥g∥1−λ
∞ (ΨM (z))1−λ ⩽ ∥g∥1−λ

∞ (ΨM (z))Λ

puisque ΨM (z) ∈ [0, 1].
De la même manière, on montre que Ψ(y)1−λf(x)λ ⩽ ∥f∥λ∞(ΨM (z))Λ.
L'inégalité voulue est donc bien démontrée.



9. On applique la question 5 avec les fonctions fε, gε et hε = h+ εΛ(∥f∥λ∞ + ∥g∥1−λ
∞ )ΨΛ

M + εΨ.
Puisque fε et gε sont strictement positives et Ψ, ΨΛ

M sont intégrables sur R (car négligeables devant x 7→ x−2

en l'in�ni), on a ainsi ∫ +∞

−∞
hε(x)dx ⩾

(∫ +∞

−∞
fε(x)dx

)λ (∫ +∞

−∞
gε(x)dx

)1−λ

. (1)

De plus, lorsque ε→ 0,∫ +∞

−∞
fε(x)dx =

∫ +∞

−∞
f(x)dx+ ε

∫ +∞

−∞
Ψ(x)dx→

∫ +∞

−∞
f(x)dx,

∫ +∞

−∞
gε(x)dx =

∫ +∞

−∞
g(x)dx+ ε

∫ +∞

−∞
Ψ(x)dx→

∫ +∞

−∞
g(x)dx.

D'autre part,∫ +∞

−∞
hε(x)dx =

∫ +∞

−∞
h(x)dx+ ε

∫ +∞

−∞
Ψ(x)dx+ εΛ(∥f∥λ∞ + ∥g∥1−λ

∞ )

∫ +∞

−∞
ΨM (x)Λdx

et, puisque Λ > 0, on a aussi

lim
ε→0

∫ +∞

−∞
hε(x)dx =

∫ +∞

−∞
h(x)dx.

En passant à la limite dans (1), on obtient bien l'inégalité � P-L �.

10. Fixons x, y ∈ R.
Si x et y appartiennent à l'intervalle [−n − 1, n + 1], l'inégalité est bien véri�ée (puisque χn(x) ⩽ 1 et

χn(y) ⩽ 1 et qu'alors χn+1(λx+ (1− λ)y) = 1).
Sinon, on a en particulier χn(x) = 0 ou χn(y) = 0 et l'inégalité est immédiatement véri�ée.

11. Posons fn = fχn, gn = gχn et hn+1 = gχn+1. Ces fonctions sont nulles en dehors de l'intervalle [−n− 2, n+ 2]

Soient x, y ∈ R et λ ∈]0, 1[.
On a d'abord h(λx+(1−λ)y) ⩾ f(x)λg(y)1−λ et χn+1(λx+(1−λ)y) ⩾ χn(x)

λχn(y)
1−λ d'après la question

précédente.
En multipliant ces inégalités entre nombres positifs, on a donc

hn+1(λx+ (1− λ)y) ⩾ fn(x)
λgn(y)

1−λ.

On applique maintenant la question 9 qui nous fournit∫ +∞

−∞
hn+1(x)dx ⩾

(∫ +∞

−∞
fn(x)dx

)λ (∫ +∞

−∞
gn(x)dx

)1−λ

. (2)

On a d'abord χn(x) → 1 pour tout x réel. Ainsi fn(x) → f(x), gn(x) → g(x), hn+1(x) → h(x) quel que soit
le réel x.

D'autre part, puisque 0 ⩽ χn ⩽ 1, on a |fn| ⩽ |f |, |gn| ⩽ |g| et |hn+1| ⩽ |h|.
Puisque |f |, |g| et |h| sont des fonctions intégrables, les hypothèses d'application du théorème sont véri�ées

donc

lim
n→∞

∫ +∞

−∞
fn(x)dx =

∫ +∞

−∞
f(x)dx, limn→∞

∫ +∞
−∞ gn(x)dx =

∫ +∞
−∞ g(x)dx

et

lim
n→∞

∫ +∞

−∞
hn+1(x)dx =

∫ +∞

−∞
h(x)dx.

En passant à la limite dans l'inégalité (2), on obtient bien l'inégalité � P-L �.


