
LE RESSAUT HYDRAULIQUE

Myrtille DAVID 24197

COMMENT OPTIMISER LE RESSAUT EN VUE DE L'AMÉNAGEMENT DES COURS D'EAU ?

Le ressaut	Première caractérisation du phénomène Obstacle : mon binôme Vanne de décharge : mon travail Dispositif expérimental et validation
Analyse de l'écoulement et de la dissipation d'énergie	Modélisation théorique - Allure de l'écoulement - Dissipation d'énergie Validation expérimentale
Application à l'aménagement des cours d'eau	Optimisation de la dissipation d'énergie Adaptation du dispositif expérimental

LE RESSAUT HYDRAULIQUE

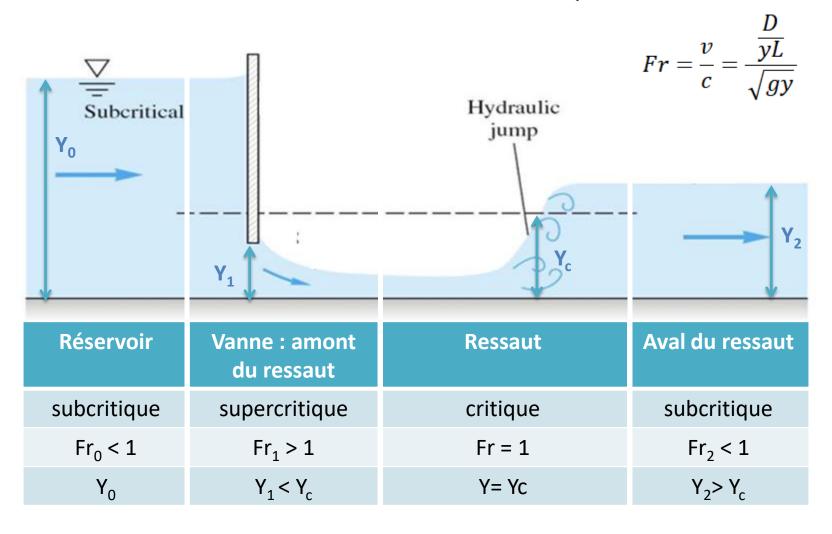


Figure 1 : Schéma d'un ressaut hydraulique, d'après Mikolaj Szydlarski, Chiara Simeoni. Numerical simulation of shallow water equations and comparison with experimental data

CLASSIFICATION

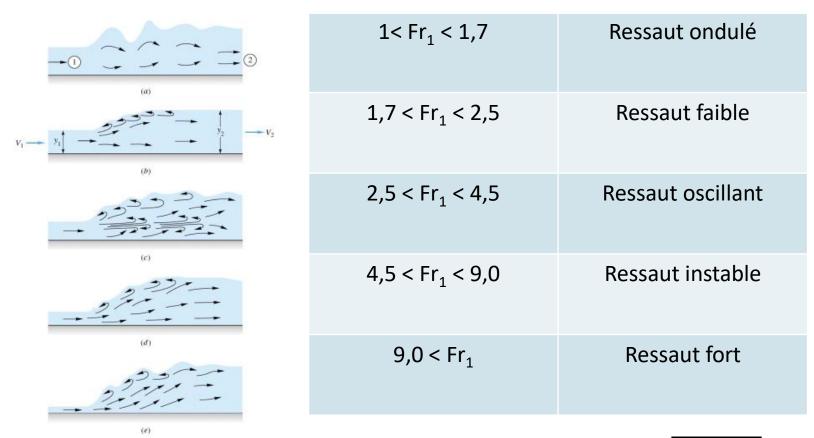


Figure 2 : Classification des ressauts hydrauliques, d'après Mikolaj Szydlarski, Chiara Simeoni. Numerical simulation of shallow water equations and comparison with experimental data

$$Fr_1 = \frac{v_1}{c_1} = \frac{\sqrt{2gy_0}}{\sqrt{gy_1}}$$

DISPOSITIF EXPÉRIMENTAL

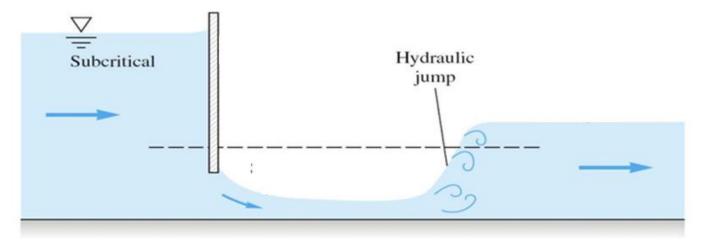


Figure 3 : Premier dispositif expérimental

VALIDATION EXPÉRIMENTALE

Figure 4 : Premier dispositif expérimental : relevé de la profondeur d'écoulement

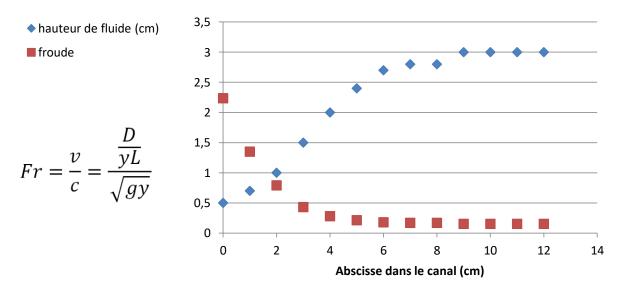
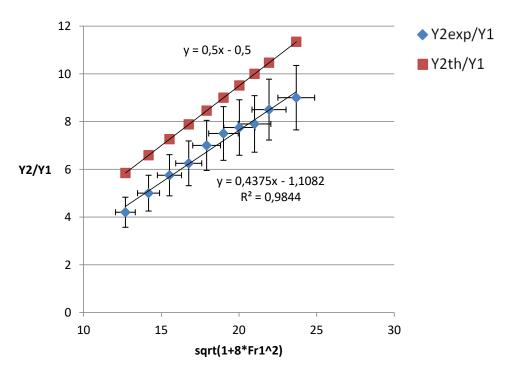
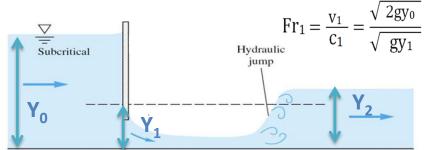


Figure 5 : évolution de la profondeur d'écoulement et du nombre de Froude dans le canal

MODÉLISATION


Calcul Fr ₁	Zone d'étude	Hypothèses	Théorèmes
$Fr_1 = \frac{v_1}{c_1} = \frac{\sqrt{2gy_0}}{\sqrt{gy_1}}$	Hydraulic jump	Écoulement parfait, stationnaire, incompressible, homogène	Bernoulli Conservation du débit Bilan de quantité de mouvement


Équation de Bélanger

$$\frac{y_2}{y_1} = \frac{1}{2} \left(\sqrt{1 + 8F_1^2} - 1 \right)$$

EXPERIENCE: HAUTEURS CONJUGUÉES

$$\frac{y_2}{y_1} = \frac{1}{2} \left(\sqrt{1 + 8F_1^2} - 1 \right)$$

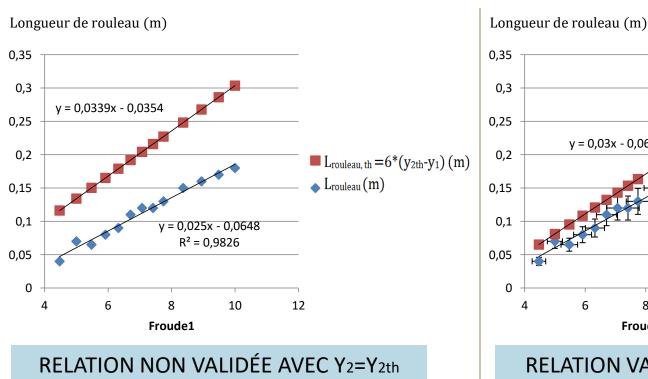

Y ₀	Y ₁	Fr ₁	Y _{2exp}	Y _{2th}
6	0,4	5,4	2,3	2,9
8	0,4	6,3	2,3	3,3
10	0,4	7,4	3,0	3,8
11	0,4	7,5	3,1	3,9
12	0,4	7,7	3,4	4,1
14	0,4	8,3	3,6	4,5

Figure 6 : Résultats expérimentaux sur les hauteurs conjuguées (cm)

EXPÉRIENCE: LONGUEUR DU ROULEAU

$$L_{\text{rouleau}} = 6*(y_2-y_1)$$

Figure 7 : résultats expérimentaux sur la longueur du rouleau

Froude 1

10

v = 0.025x - 0.0648

 $R^2 = 0.9826$

12

y = 0.03x - 0.069

 $L_{\text{rouleau, th}} = 6*(v_{2\text{exp}}-v_1) \text{ (m)}$

◆ L_{rouleau} (m)

MODÉLISATION: DISSIPATION D'ÉNERGIE

Énergie spécifique	Variation d'énergie	Rendement
$E = y + \frac{V^2}{2g}$	$\Delta E = \frac{(y_2 - y_1)^3}{4y_1 y_2}$	$\eta = \frac{\Delta E}{E_1} = 1 - \frac{E_2}{E_1}$

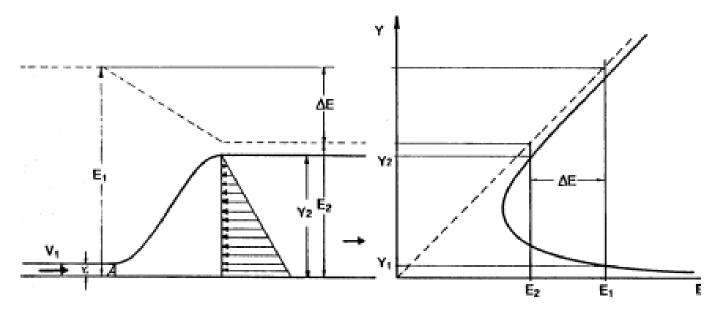
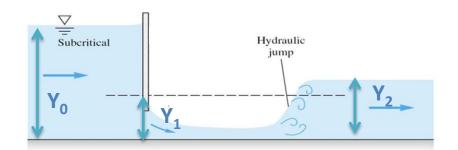



Figure 8 : Diagramme énergie spécifique en fonction de la profondeur d'écoulement, D'après université de Laval, chapitre 15, Ressaut hydraulique

DISSIPATION D'ÉNERGIE

$$\Delta E = \frac{-(y_2 - y_1)^3}{4y_1y_2}$$

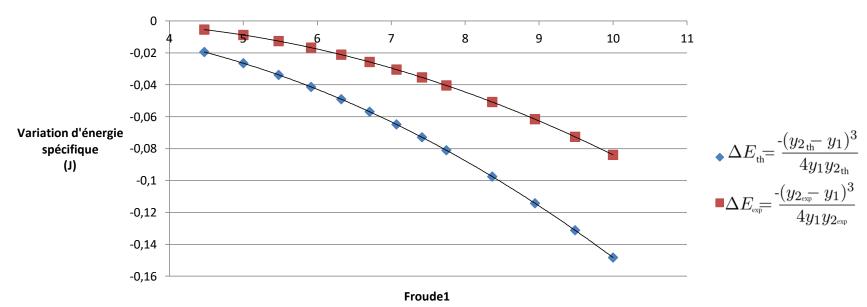
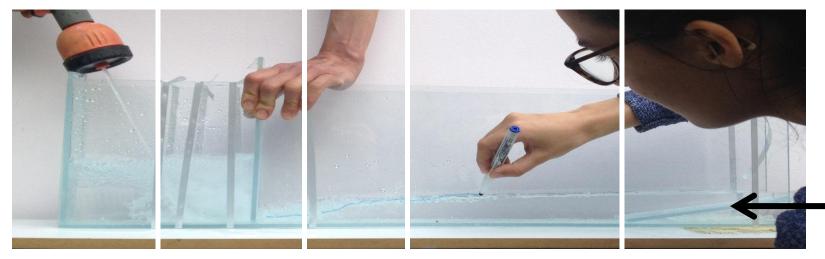
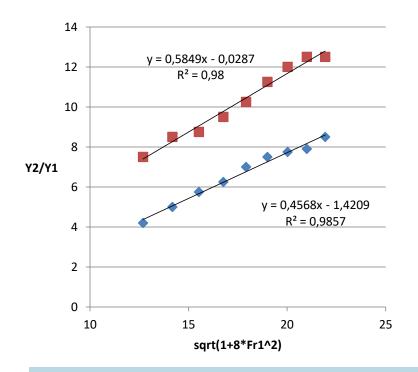


Figure 9 : résultats expérimentaux sur la dissipation d'énergie

ADAPTATION DU DISPOSITIF



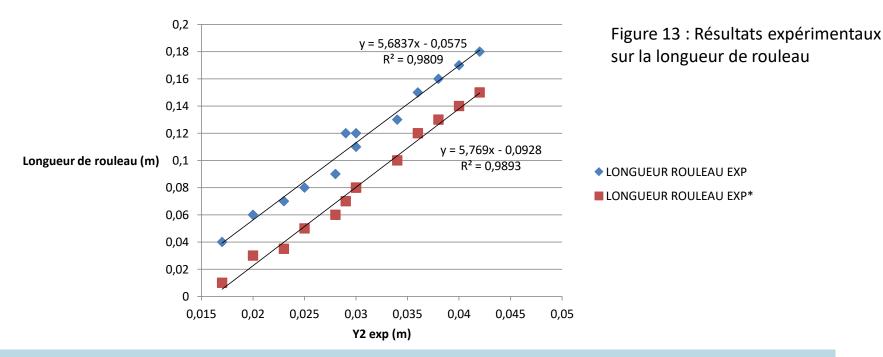

Figure 10 : Deuxième dispositif expérimental : simulation d'un cours d'eau

Réservoir	Vanne: amont du ressaut	Ressaut	Aval du ressaut	Loin du ressaut
subcritique	supercritique	critique	subcritique	subcritique
Fr ₀ < 1	Fr ₁ > 1	Fr = 1	Fr ₂ < 1	Fr ₃
Y_0	$Y_1 < Y_c$	Y= Y _c	$Y_2 > Y_c$	Y ₃

EFFET SUR LES HAUTEURS CONJUGUÉES

Figure 11 : Schéma d'un ressaut hydraulique, d'après Mikolaj Szydlarski, Chiara Simeoni. Numerical simulation of shallow water equations and comparison with experimental data

▼ Y2exp/Y1	
■Y2exp*/Y1	


$$\frac{y_2}{y_1} = \frac{1}{2} \left(\sqrt{1 + 8 F_1^2} - 1 \right)$$

Y ₀	Y_1	Y _{2exp}	Y _{2exp} *	Y ₃
6	0,4	2,3	3,5	5,0
8	0,4	2,4	4,1	5,0
10	0,4	3,0	4,8	5,0
11	0,4	3,1	5,0	5,0
12	0,4	3,4	5,1	5,0
14	0,4	3,6	5,3	5,0

Figure 12 : Résultats expérimentaux sur les hauteurs conjuguées

EFFET SUR LA LONGUEUR DE ROULEAU

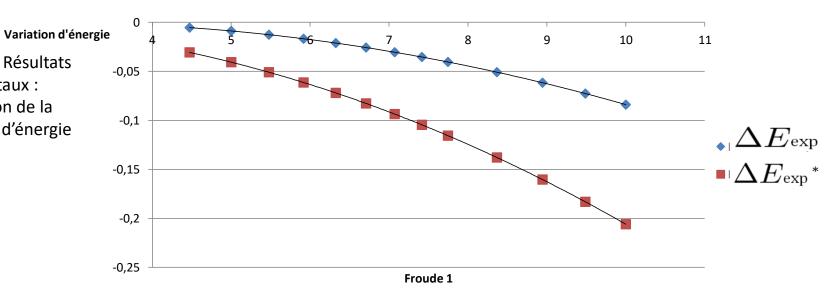

OPTIMISATION DE LA DISSIPATION D'ÉNERGIE

Figure 14 : Troisième dispositif expérimental : simulation d'un cours d'eau et ajout d'un dissipateur d'énergie

DISSIPATEUR D'ÉNERGIE

Figure 15 : Résultats expérimentaux : amélioration de la dissipation d'énergie

CONCLUSION

Formation d'un ressaut hydraulique	Analyse du ressaut par vanne	Optimisation du ressaut
Évolution du nombre de Froude / nature de l'écoulement	Relation de Bélanger : hauteurs conjuguées Relation : longueur de rouleau et hauteurs conjuguées Mise en évidence : dissipation d'énergie	Maximisation de la dissipation d'énergie Localisation du ressaut
	Facteurs d'influence du ressaut par obstacle : Débit augmente hauteurs conj. Pente diminue hauteurs conj.	

MERCI POUR VOTRE ATTENTION