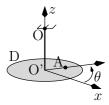
DM nº 13 de Physique Mécanique du solide

Pendule de torsion

Un disque D est accroché par son centre O' à un fil de torsion vertical OO' de constante de torsion C. On note J_z le moment d'inertie du disque par rapport à l'axe vertical (Oz) confondu avec le fil, orienté vers le haut. O est un point fixe du référentiel terrestre, A est un point fixe du disque. La rotation du disque D est repérée par l'angle θ . Le fil de torsion n'est pas tordu lorsque $\theta = 0$.



Les frottements de l'air sont tout d'abord négligés.

- 1. Préciser le moment par rapport à (Oz) exercé par le fil de torsion sur le disque D.
- 2. Montrer que ce couple dérive d'une énergie potentielle quadratique $E_{\rm p}$ que l'on exprimera.

On abandonne sans vitesse angulaire initiale le disque dans la position $\theta = \theta_0$.

- 3. A-t-on conservation du moment cinétique de D par rapport à (Oz) et de l'énergie cinétique de D?
- 4. L'énergie mécanique se conserve-t-elle? L'exprimer en fonction de C et de θ_0 uniquement.
- 5. Donner l'équation différentielle régissant l'évolution temporelle de l'angle θ .

 Remarque : on peut utiliser facilement au moins deux méthodes. À essayer sur votre brouillon...
- 6. En déduire l'expression de θ en fonction du temps. On définira la pulsation propre ω_0 du système.

Les frottements de l'air sont à présent pris en compte. On les modélise par un couple de frottement visqueux qui, en projection sur l'axe de rotation, s'écrit $\mathcal{M}_{z}^{f} = -f \dot{\theta}$, où f > 0. On pose pour la suite $f = 2 a J_{z}$.

- 7. Déterminer les dimensions du coefficient a par analyse dimensionnelle.
- 8. Donner l'équation différentielle régissant l'évolution temporelle de θ .
- 9. On suppose que les paramètres vérifient $2a = \omega_0$. Exprimer (entièrement, avec les bonnes constantes d'intégration) et représenter graphiquement $\theta(t)$.